// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) #ifndef CERES_INTERNAL_PROGRAM_H_ #define CERES_INTERNAL_PROGRAM_H_ #include #include #include #include "ceres/internal/port.h" namespace ceres { namespace internal { class ParameterBlock; class ProblemImpl; class ResidualBlock; class TripletSparseMatrix; // A nonlinear least squares optimization problem. This is different from the // similarly-named "Problem" object, which offers a mutation interface for // adding and modifying parameters and residuals. The Program contains the core // part of the Problem, which is the parameters and the residuals, stored in a // particular ordering. The ordering is critical, since it defines the mapping // between (residual, parameter) pairs and a position in the jacobian of the // objective function. Various parts of Ceres transform one Program into // another; for example, the first stage of solving involves stripping all // constant parameters and residuals. This is in contrast with Problem, which is // not built for transformation. class Program { public: Program(); explicit Program(const Program& program); // The ordered parameter and residual blocks for the program. const vector& parameter_blocks() const; const vector& residual_blocks() const; vector* mutable_parameter_blocks(); vector* mutable_residual_blocks(); // Serialize to/from the program and update states. // // NOTE: Setting the state of a parameter block can trigger the // computation of the Jacobian of its local parameterization. If // this computation fails for some reason, then this method returns // false and the state of the parameter blocks cannot be trusted. bool StateVectorToParameterBlocks(const double *state); void ParameterBlocksToStateVector(double *state) const; // Copy internal state to the user's parameters. void CopyParameterBlockStateToUserState(); // Set the parameter block pointers to the user pointers. Since this // runs parameter block set state internally, which may call local // parameterizations, this can fail. False is returned on failure. bool SetParameterBlockStatePtrsToUserStatePtrs(); // Update a state vector for the program given a delta. bool Plus(const double* state, const double* delta, double* state_plus_delta) const; // Set the parameter indices and offsets. This permits mapping backward // from a ParameterBlock* to an index in the parameter_blocks() vector. For // any parameter block p, after calling SetParameterOffsetsAndIndex(), it // is true that // // parameter_blocks()[p->index()] == p // // If a parameter appears in a residual but not in the parameter block, then // it will have an index of -1. // // This also updates p->state_offset() and p->delta_offset(), which are the // position of the parameter in the state and delta vector respectively. void SetParameterOffsetsAndIndex(); // Check if the internal state of the program (the indexing and the // offsets) are correct. bool IsValid() const; bool ParameterBlocksAreFinite(string* message) const; // Returns true if the program has any non-constant parameter blocks // which have non-trivial bounds constraints. bool IsBoundsConstrained() const; // Returns false, if the program has any constant parameter blocks // which are not feasible, or any variable parameter blocks which // have a lower bound greater than or equal to the upper bound. bool IsFeasible(string* message) const; // Loop over each residual block and ensure that no two parameter // blocks in the same residual block are part of // parameter_blocks as that would violate the assumption that it // is an independent set in the Hessian matrix. bool IsParameterBlockSetIndependent(const set& independent_set) const; // Create a TripletSparseMatrix which contains the zero-one // structure corresponding to the block sparsity of the transpose of // the Jacobian matrix. // // Caller owns the result. TripletSparseMatrix* CreateJacobianBlockSparsityTranspose() const; // Create a copy of this program and removes constant parameter // blocks and residual blocks with no varying parameter blocks while // preserving their relative order. // // removed_parameter_blocks on exit will contain the list of // parameter blocks that were removed. // // fixed_cost will be equal to the sum of the costs of the residual // blocks that were removed. // // If there was a problem, then the function will return a NULL // pointer and error will contain a human readable description of // the problem. Program* CreateReducedProgram(vector* removed_parameter_blocks, double* fixed_cost, string* error) const; // See problem.h for what these do. int NumParameterBlocks() const; int NumParameters() const; int NumEffectiveParameters() const; int NumResidualBlocks() const; int NumResiduals() const; int MaxScratchDoublesNeededForEvaluate() const; int MaxDerivativesPerResidualBlock() const; int MaxParametersPerResidualBlock() const; int MaxResidualsPerResidualBlock() const; // A human-readable dump of the parameter blocks for debugging. // TODO(keir): If necessary, also dump the residual blocks. string ToString() const; private: // Remove constant parameter blocks and residual blocks with no // varying parameter blocks while preserving their relative order. // // removed_parameter_blocks on exit will contain the list of // parameter blocks that were removed. // // fixed_cost will be equal to the sum of the costs of the residual // blocks that were removed. // // If there was a problem, then the function will return false and // error will contain a human readable description of the problem. bool RemoveFixedBlocks(vector* removed_parameter_blocks, double* fixed_cost, string* message); // The Program does not own the ParameterBlock or ResidualBlock objects. vector parameter_blocks_; vector residual_blocks_; friend class ProblemImpl; }; } // namespace internal } // namespace ceres #endif // CERES_INTERNAL_PROGRAM_H_