aboutsummaryrefslogtreecommitdiff
path: root/docs/source/modeling.rst
blob: 8e6de126cb66ca7b0edfe74cab748739164a3ef0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
.. default-domain:: cpp

.. cpp:namespace:: ceres

.. _`chapter-modeling`:

========
Modeling
========

Recall that Ceres solves robustified non-linear least squares problems
of the form

.. math:: \frac{1}{2}\sum_{i=1} \rho_i\left(\left\|f_i\left(x_{i_1}, ... ,x_{i_k}\right)\right\|^2\right).
   :label: ceresproblem

The expression
:math:`\rho_i\left(\left\|f_i\left(x_{i_1},...,x_{i_k}\right)\right\|^2\right)`
is known as a ``ResidualBlock``, where :math:`f_i(\cdot)` is a
:class:`CostFunction` that depends on the parameter blocks
:math:`\left[x_{i_1},... , x_{i_k}\right]`. In most optimization
problems small groups of scalars occur together. For example the three
components of a translation vector and the four components of the
quaternion that define the pose of a camera. We refer to such a group
of small scalars as a ``ParameterBlock``. Of course a
``ParameterBlock`` can just be a single parameter. :math:`\rho_i` is a
:class:`LossFunction`. A :class:`LossFunction` is a scalar function
that is used to reduce the influence of outliers on the solution of
non-linear least squares problems.

In this chapter we will describe the various classes that are part of
Ceres Solver's modeling API, and how they can be used to construct an
optimization problem. Once a problem has been constructed, various
methods for solving them will be discussed in
:ref:`chapter-solving`. It is by design that the modeling and the
solving APIs are orthogonal to each other. This enables
switching/tweaking of various solver parameters without having to
touch the problem once it has been successfully modeled.

:class:`CostFunction`
---------------------

The single biggest task when modeling a problem is specifying the
residuals and their derivatives. This is done using
:class:`CostFunction` objects.

.. class:: CostFunction

   .. code-block:: c++

    class CostFunction {
     public:
      virtual bool Evaluate(double const* const* parameters,
                            double* residuals,
                            double** jacobians) = 0;
      const vector<int16>& parameter_block_sizes();
      int num_residuals() const;

     protected:
      vector<int16>* mutable_parameter_block_sizes();
      void set_num_residuals(int num_residuals);
    };

   Given parameter blocks :math:`\left[x_{i_1}, ... , x_{i_k}\right]`,
   a :class:`CostFunction` is responsible for computing a vector of
   residuals and if asked a vector of Jacobian matrices, i.e., given
   :math:`\left[x_{i_1}, ... , x_{i_k}\right]`, compute the vector
   :math:`f_i\left(x_{i_1},...,x_{i_k}\right)` and the matrices

   .. math:: J_{ij} = \frac{\partial}{\partial x_{i_j}}f_i\left(x_{i_1},...,x_{i_k}\right),\quad \forall j \in \{i_1,..., i_k\}

   The signature of the :class:`CostFunction` (number and sizes of
   input parameter blocks and number of outputs) is stored in
   :member:`CostFunction::parameter_block_sizes_` and
   :member:`CostFunction::num_residuals_` respectively. User code
   inheriting from this class is expected to set these two members
   with the corresponding accessors. This information will be verified
   by the :class:`Problem` when added with
   :func:`Problem::AddResidualBlock`.

.. function:: bool CostFunction::Evaluate(double const* const* parameters, double* residuals, double** jacobians)

   Compute the residual vector and the Jacobian matrices.

   ``parameters`` is an array of pointers to arrays containing the
   various parameter blocks. ``parameters`` has the same number of
   elements as :member:`CostFunction::parameter_block_sizes_` and the
   parameter blocks are in the same order as
   :member:`CostFunction::parameter_block_sizes_`.

   ``residuals`` is an array of size ``num_residuals_``.

   ``jacobians`` is an array of size
   :member:`CostFunction::parameter_block_sizes_` containing pointers
   to storage for Jacobian matrices corresponding to each parameter
   block. The Jacobian matrices are in the same order as
   :member:`CostFunction::parameter_block_sizes_`. ``jacobians[i]`` is
   an array that contains :member:`CostFunction::num_residuals_` x
   :member:`CostFunction::parameter_block_sizes_` ``[i]``
   elements. Each Jacobian matrix is stored in row-major order, i.e.,
   ``jacobians[i][r * parameter_block_size_[i] + c]`` =
   :math:`\frac{\partial residual[r]}{\partial parameters[i][c]}`


   If ``jacobians`` is ``NULL``, then no derivatives are returned;
   this is the case when computing cost only. If ``jacobians[i]`` is
   ``NULL``, then the Jacobian matrix corresponding to the
   :math:`i^{\textrm{th}}` parameter block must not be returned, this
   is the case when a parameter block is marked constant.

   **NOTE** The return value indicates whether the computation of the
   residuals and/or jacobians was successful or not.

   This can be used to communicate numerical failures in Jacobian
   computations for instance.

   A more interesting and common use is to impose constraints on the
   parameters. If the initial values of the parameter blocks satisfy
   the constraints, then returning false whenever the constraints are
   not satisfied will prevent the solver from moving into the
   infeasible region. This is not a very sophisticated mechanism for
   enforcing constraints, but is often good enough for things like
   non-negativity constraints.

   Note that it is important that the initial values of the parameter
   block must be feasible, otherwise the solver will declare a
   numerical problem at iteration 0.


:class:`SizedCostFunction`
--------------------------

.. class:: SizedCostFunction

   If the size of the parameter blocks and the size of the residual
   vector is known at compile time (this is the common case),
   :class:`SizeCostFunction` can be used where these values can be
   specified as template parameters and the user only needs to
   implement :func:`CostFunction::Evaluate`.

   .. code-block:: c++

    template<int kNumResiduals,
             int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
             int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
    class SizedCostFunction : public CostFunction {
     public:
      virtual bool Evaluate(double const* const* parameters,
                            double* residuals,
                            double** jacobians) const = 0;
    };


:class:`AutoDiffCostFunction`
-----------------------------

.. class:: AutoDiffCostFunction

   Defining a :class:`CostFunction` or a :class:`SizedCostFunction`
   can be a tedious and error prone especially when computing
   derivatives.  To this end Ceres provides `automatic differentiation
   <http://en.wikipedia.org/wiki/Automatic_differentiation>`_.

   .. code-block:: c++

     template <typename CostFunctor,
            int M,        // Number of residuals, or ceres::DYNAMIC.
            int N0,       // Number of parameters in block 0.
            int N1 = 0,   // Number of parameters in block 1.
            int N2 = 0,   // Number of parameters in block 2.
            int N3 = 0,   // Number of parameters in block 3.
            int N4 = 0,   // Number of parameters in block 4.
            int N5 = 0,   // Number of parameters in block 5.
            int N6 = 0,   // Number of parameters in block 6.
            int N7 = 0,   // Number of parameters in block 7.
            int N8 = 0,   // Number of parameters in block 8.
            int N9 = 0>   // Number of parameters in block 9.
     class AutoDiffCostFunction : public
     SizedCostFunction<M, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {
     };

   To get an auto differentiated cost function, you must define a
   class with a templated ``operator()`` (a functor) that computes the
   cost function in terms of the template parameter ``T``. The
   autodiff framework substitutes appropriate ``Jet`` objects for
   ``T`` in order to compute the derivative when necessary, but this
   is hidden, and you should write the function as if ``T`` were a
   scalar type (e.g. a double-precision floating point number).

   The function must write the computed value in the last argument
   (the only non-``const`` one) and return true to indicate success.
   Please see :class:`CostFunction` for details on how the return
   value may be used to impose simple constraints on the parameter
   block.

   For example, consider a scalar error :math:`e = k - x^\top y`,
   where both :math:`x` and :math:`y` are two-dimensional vector
   parameters and :math:`k` is a constant. The form of this error,
   which is the difference between a constant and an expression, is a
   common pattern in least squares problems. For example, the value
   :math:`x^\top y` might be the model expectation for a series of
   measurements, where there is an instance of the cost function for
   each measurement :math:`k`.

   The actual cost added to the total problem is :math:`e^2`, or
   :math:`(k - x^\top y)^2`; however, the squaring is implicitly done
   by the optimization framework.

   To write an auto-differentiable cost function for the above model,
   first define the object

   .. code-block:: c++

    class MyScalarCostFunctor {
      MyScalarCostFunctor(double k): k_(k) {}

      template <typename T>
      bool operator()(const T* const x , const T* const y, T* e) const {
        e[0] = T(k_) - x[0] * y[0] - x[1] * y[1];
        return true;
      }

     private:
      double k_;
    };


   Note that in the declaration of ``operator()`` the input parameters
   ``x`` and ``y`` come first, and are passed as const pointers to arrays
   of ``T``. If there were three input parameters, then the third input
   parameter would come after ``y``. The output is always the last
   parameter, and is also a pointer to an array. In the example above,
   ``e`` is a scalar, so only ``e[0]`` is set.

   Then given this class definition, the auto differentiated cost
   function for it can be constructed as follows.

   .. code-block:: c++

    CostFunction* cost_function
        = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
            new MyScalarCostFunctor(1.0));              ^  ^  ^
                                                        |  |  |
                            Dimension of residual ------+  |  |
                            Dimension of x ----------------+  |
                            Dimension of y -------------------+


   In this example, there is usually an instance for each measurement
   of ``k``.

   In the instantiation above, the template parameters following
   ``MyScalarCostFunction``, ``<1, 2, 2>`` describe the functor as
   computing a 1-dimensional output from two arguments, both
   2-dimensional.

   The framework can currently accommodate cost functions of up to 10
   independent variables, and there is no limit on the dimensionality
   of each of them.

   **WARNING 1** Since the functor will get instantiated with
   different types for ``T``, you must convert from other numeric
   types to ``T`` before mixing computations with other variables
   of type ``T``. In the example above, this is seen where instead of
   using ``k_`` directly, ``k_`` is wrapped with ``T(k_)``.

   **WARNING 2** A common beginner's error when first using
   :class:`AutoDiffCostFunction` is to get the sizing wrong. In particular,
   there is a tendency to set the template parameters to (dimension of
   residual, number of parameters) instead of passing a dimension
   parameter for *every parameter block*. In the example above, that
   would be ``<MyScalarCostFunction, 1, 2>``, which is missing the 2
   as the last template argument.


:class:`DynamicAutoDiffCostFunction`
------------------------------------

.. class:: DynamicAutoDiffCostFunction

   :class:`AutoDiffCostFunction` requires that the number of parameter
   blocks and their sizes be known at compile time, e.g., Bezier curve
   fitting, Neural Network training etc. It also has an upper limit of
   10 parameter blocks. In a number of applications, this is not
   enough.

     .. code-block:: c++

      template <typename CostFunctor, int Stride = 4>
      class DynamicAutoDiffCostFunction : public CostFunction {
      };

   In such cases :class:`DynamicAutoDiffCostFunction` can be
   used. Like :class:`AutoDiffCostFunction` the user must define a
   templated functor, but the signature of the functor differs
   slightly. The expected interface for the cost functors is:

     .. code-block:: c++

       struct MyCostFunctor {
         template<typename T>
         bool operator()(T const* const* parameters, T* residuals) const {
         }
       }

   Since the sizing of the parameters is done at runtime, you must
   also specify the sizes after creating the dynamic autodiff cost
   function. For example:

     .. code-block:: c++

       DynamicAutoDiffCostFunction<MyCostFunctor, 4> cost_function(
           new MyCostFunctor());
       cost_function.AddParameterBlock(5);
       cost_function.AddParameterBlock(10);
       cost_function.SetNumResiduals(21);

   Under the hood, the implementation evaluates the cost function
   multiple times, computing a small set of the derivatives (four by
   default, controlled by the ``Stride`` template parameter) with each
   pass. There is a performance tradeoff with the size of the passes;
   Smaller sizes are more cache efficient but result in larger number
   of passes, and larger stride lengths can destroy cache-locality
   while reducing the number of passes over the cost function. The
   optimal value depends on the number and sizes of the various
   parameter blocks.

   As a rule of thumb, try using :class:`AutoDiffCostFunction` before
   you use :class:`DynamicAutoDiffCostFunction`.

:class:`NumericDiffCostFunction`
--------------------------------

.. class:: NumericDiffCostFunction

  In some cases, its not possible to define a templated cost functor,
  for example when the evaluation of the residual involves a call to a
  library function that you do not have control over.  In such a
  situation, `numerical differentiation
  <http://en.wikipedia.org/wiki/Numerical_differentiation>`_ can be
  used.

    .. code-block:: c++

      template <typename CostFunctionNoJacobian,
                NumericDiffMethod method = CENTRAL, int M = 0,
                int N0 = 0, int N1 = 0, int N2 = 0, int N3 = 0, int N4 = 0,
                int N5 = 0, int N6 = 0, int N7 = 0, int N8 = 0, int N9 = 0>
      class NumericDiffCostFunction
        : public SizedCostFunction<M, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9> {
      };

   To get a numerically differentiated :class:`CostFunction`, you must
   define a class with a ``operator()`` (a functor) that computes the
   residuals. The functor must write the computed value in the last
   argument (the only non-``const`` one) and return ``true`` to
   indicate success.  Please see :class:`CostFunction` for details on
   how the return value may be used to impose simple constraints on
   the parameter block. e.g., an object of the form

   .. code-block:: c++

     struct ScalarFunctor {
      public:
       bool operator()(const double* const x1,
                       const double* const x2,
                       double* residuals) const;
     }

   For example, consider a scalar error :math:`e = k - x'y`, where
   both :math:`x` and :math:`y` are two-dimensional column vector
   parameters, the prime sign indicates transposition, and :math:`k`
   is a constant. The form of this error, which is the difference
   between a constant and an expression, is a common pattern in least
   squares problems. For example, the value :math:`x'y` might be the
   model expectation for a series of measurements, where there is an
   instance of the cost function for each measurement :math:`k`.

   To write an numerically-differentiable class:`CostFunction` for the
   above model, first define the object

   .. code-block::  c++

     class MyScalarCostFunctor {
       MyScalarCostFunctor(double k): k_(k) {}

       bool operator()(const double* const x,
                       const double* const y,
                       double* residuals) const {
         residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
         return true;
       }

      private:
       double k_;
     };

   Note that in the declaration of ``operator()`` the input parameters
   ``x`` and ``y`` come first, and are passed as const pointers to
   arrays of ``double`` s. If there were three input parameters, then
   the third input parameter would come after ``y``. The output is
   always the last parameter, and is also a pointer to an array. In
   the example above, the residual is a scalar, so only
   ``residuals[0]`` is set.

   Then given this class definition, the numerically differentiated
   :class:`CostFunction` with central differences used for computing
   the derivative can be constructed as follows.

   .. code-block:: c++

     CostFunction* cost_function
         = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
             new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^
                                                               |     |  |  |
                                   Finite Differencing Scheme -+     |  |  |
                                   Dimension of residual ------------+  |  |
                                   Dimension of x ----------------------+  |
                                   Dimension of y -------------------------+

   In this example, there is usually an instance for each measurement
   of `k`.

   In the instantiation above, the template parameters following
   ``MyScalarCostFunctor``, ``1, 2, 2``, describe the functor as
   computing a 1-dimensional output from two arguments, both
   2-dimensional.

   The framework can currently accommodate cost functions of up to 10
   independent variables, and there is no limit on the dimensionality
   of each of them.

   The ``CENTRAL`` difference method is considerably more accurate at
   the cost of twice as many function evaluations than forward
   difference. Consider using central differences begin with, and only
   after that works, trying forward difference to improve performance.

   **WARNING** A common beginner's error when first using
   NumericDiffCostFunction is to get the sizing wrong. In particular,
   there is a tendency to set the template parameters to (dimension of
   residual, number of parameters) instead of passing a dimension
   parameter for *every parameter*. In the example above, that would
   be ``<MyScalarCostFunctor, 1, 2>``, which is missing the last ``2``
   argument. Please be careful when setting the size parameters.


   **Alternate Interface**

   For a variety of reason, including compatibility with legacy code,
   :class:`NumericDiffCostFunction` can also take
   :class:`CostFunction` objects as input. The following describes
   how.

   To get a numerically differentiated cost function, define a
   subclass of :class:`CostFunction` such that the
   :func:`CostFunction::Evaluate` function ignores the ``jacobians``
   parameter. The numeric differentiation wrapper will fill in the
   jacobian parameter if necessary by repeatedly calling the
   :func:`CostFunction::Evaluate` with small changes to the
   appropriate parameters, and computing the slope. For performance,
   the numeric differentiation wrapper class is templated on the
   concrete cost function, even though it could be implemented only in
   terms of the :class:`CostFunction` interface.

   The numerically differentiated version of a cost function for a
   cost function can be constructed as follows:

   .. code-block:: c++

     CostFunction* cost_function
         = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
             new MyCostFunction(...), TAKE_OWNERSHIP);

   where ``MyCostFunction`` has 1 residual and 2 parameter blocks with
   sizes 4 and 8 respectively. Look at the tests for a more detailed
   example.

:class:`NumericDiffFunctor`
---------------------------

.. class:: NumericDiffFunctor

   Sometimes parts of a cost function can be differentiated
   automatically or analytically but others require numeric
   differentiation. :class:`NumericDiffFunctor` is a wrapper class
   that takes a variadic functor evaluating a function, numerically
   differentiates it and makes it available as a templated functor so
   that it can be easily used as part of Ceres' automatic
   differentiation framework.

   For example, let us assume that

   .. code-block:: c++

     struct IntrinsicProjection
       IntrinsicProjection(const double* observations);
       bool operator()(const double* calibration,
                       const double* point,
                       double* residuals);
     };

   is a functor that implements the projection of a point in its local
   coordinate system onto its image plane and subtracts it from the
   observed point projection.

   Now we would like to compose the action of this functor with the
   action of camera extrinsics, i.e., rotation and translation, which
   is given by the following templated function

   .. code-block:: c++

     template<typename T>
     void RotateAndTranslatePoint(const T* rotation,
                                  const T* translation,
                                  const T* point,
                                  T* result);

   To compose the extrinsics and intrinsics, we can construct a
   ``CameraProjection`` functor as follows.

   .. code-block:: c++

    struct CameraProjection {
       typedef NumericDiffFunctor<IntrinsicProjection, CENTRAL, 2, 5, 3>
          IntrinsicProjectionFunctor;

      CameraProjection(double* observation) {
        intrinsic_projection_.reset(
            new IntrinsicProjectionFunctor(observation)) {
      }

      template <typename T>
      bool operator()(const T* rotation,
                      const T* translation,
                      const T* intrinsics,
                      const T* point,
                      T* residuals) const {
        T transformed_point[3];
        RotateAndTranslatePoint(rotation, translation, point, transformed_point);
        return (*intrinsic_projection_)(intrinsics, transformed_point, residual);
      }

     private:
      scoped_ptr<IntrinsicProjectionFunctor> intrinsic_projection_;
    };

   Here, we made the choice of using ``CENTRAL`` differences to compute
   the jacobian of ``IntrinsicProjection``.

   Now, we are ready to construct an automatically differentiated cost
   function as

   .. code-block:: c++

    CostFunction* cost_function =
        new AutoDiffCostFunction<CameraProjection, 2, 3, 3, 5>(
           new CameraProjection(observations));

   ``cost_function`` now seamlessly integrates automatic
   differentiation of ``RotateAndTranslatePoint`` with a numerically
   differentiated version of ``IntrinsicProjection``.


:class:`CostFunctionToFunctor`
------------------------------

.. class:: CostFunctionToFunctor

   Just like :class:`NumericDiffFunctor` allows numeric
   differentiation to be mixed with automatic differentiation,
   :class:`CostFunctionToFunctor` provides an even more general
   mechanism.  :class:`CostFunctionToFunctor` is an adapter class that
   allows users to use :class:`CostFunction` objects in templated
   functors which are to be used for automatic differentiation.  This
   allows the user to seamlessly mix analytic, numeric and automatic
   differentiation.

   For example, let us assume that

   .. code-block:: c++

     class IntrinsicProjection : public SizedCostFunction<2, 5, 3> {
       public:
         IntrinsicProjection(const double* observations);
         virtual bool Evaluate(double const* const* parameters,
                               double* residuals,
                               double** jacobians) const;
     };

   is a :class:`CostFunction` that implements the projection of a
   point in its local coordinate system onto its image plane and
   subtracts it from the observed point projection. It can compute its
   residual and either via analytic or numerical differentiation can
   compute its jacobians.

   Now we would like to compose the action of this
   :class:`CostFunction` with the action of camera extrinsics, i.e.,
   rotation and translation. Say we have a templated function

   .. code-block:: c++

      template<typename T>
      void RotateAndTranslatePoint(const T* rotation,
                                   const T* translation,
                                   const T* point,
                                   T* result);


   Then we can now do the following,

   .. code-block:: c++

    struct CameraProjection {
      CameraProjection(double* observation) {
        intrinsic_projection_.reset(
            new CostFunctionToFunctor<2, 5, 3>(new IntrinsicProjection(observation_)));
      }
      template <typename T>
      bool operator()(const T* rotation,
                      const T* translation,
                      const T* intrinsics,
                      const T* point,
                      T* residual) const {
        T transformed_point[3];
        RotateAndTranslatePoint(rotation, translation, point, transformed_point);

        // Note that we call intrinsic_projection_, just like it was
        // any other templated functor.
        return (*intrinsic_projection_)(intrinsics, transformed_point, residual);
      }

     private:
      scoped_ptr<CostFunctionToFunctor<2,5,3> > intrinsic_projection_;
    };



:class:`ConditionedCostFunction`
--------------------------------

.. class:: ConditionedCostFunction

   This class allows you to apply different conditioning to the residual
   values of a wrapped cost function. An example where this is useful is
   where you have an existing cost function that produces N values, but you
   want the total cost to be something other than just the sum of these
   squared values - maybe you want to apply a different scaling to some
   values, to change their contribution to the cost.

   Usage:

   .. code-block:: c++

       //  my_cost_function produces N residuals
       CostFunction* my_cost_function = ...
       CHECK_EQ(N, my_cost_function->num_residuals());
       vector<CostFunction*> conditioners;

       //  Make N 1x1 cost functions (1 parameter, 1 residual)
       CostFunction* f_1 = ...
       conditioners.push_back(f_1);

       CostFunction* f_N = ...
       conditioners.push_back(f_N);
       ConditionedCostFunction* ccf =
         new ConditionedCostFunction(my_cost_function, conditioners);


   Now ``ccf`` 's ``residual[i]`` (i=0..N-1) will be passed though the
   :math:`i^{\text{th}}` conditioner.

   .. code-block:: c++

      ccf_residual[i] = f_i(my_cost_function_residual[i])

   and the Jacobian will be affected appropriately.


:class:`NormalPrior`
--------------------

.. class:: NormalPrior

   .. code-block:: c++

     class NormalPrior: public CostFunction {
      public:
       // Check that the number of rows in the vector b are the same as the
       // number of columns in the matrix A, crash otherwise.
       NormalPrior(const Matrix& A, const Vector& b);

       virtual bool Evaluate(double const* const* parameters,
                             double* residuals,
                             double** jacobians) const;
      };

   Implements a cost function of the form

   .. math::  cost(x) = ||A(x - b)||^2

   where, the matrix A and the vector b are fixed and x is the
   variable. In case the user is interested in implementing a cost
   function of the form

  .. math::  cost(x) = (x - \mu)^T S^{-1} (x - \mu)

  where, :math:`\mu` is a vector and :math:`S` is a covariance matrix,
  then, :math:`A = S^{-1/2}`, i.e the matrix :math:`A` is the square
  root of the inverse of the covariance, also known as the stiffness
  matrix. There are however no restrictions on the shape of
  :math:`A`. It is free to be rectangular, which would be the case if
  the covariance matrix :math:`S` is rank deficient.



:class:`LossFunction`
---------------------

.. class:: LossFunction

   For least squares problems where the minimization may encounter
   input terms that contain outliers, that is, completely bogus
   measurements, it is important to use a loss function that reduces
   their influence.

   Consider a structure from motion problem. The unknowns are 3D
   points and camera parameters, and the measurements are image
   coordinates describing the expected reprojected position for a
   point in a camera. For example, we want to model the geometry of a
   street scene with fire hydrants and cars, observed by a moving
   camera with unknown parameters, and the only 3D points we care
   about are the pointy tippy-tops of the fire hydrants. Our magic
   image processing algorithm, which is responsible for producing the
   measurements that are input to Ceres, has found and matched all
   such tippy-tops in all image frames, except that in one of the
   frame it mistook a car's headlight for a hydrant. If we didn't do
   anything special the residual for the erroneous measurement will
   result in the entire solution getting pulled away from the optimum
   to reduce the large error that would otherwise be attributed to the
   wrong measurement.

   Using a robust loss function, the cost for large residuals is
   reduced. In the example above, this leads to outlier terms getting
   down-weighted so they do not overly influence the final solution.

   .. code-block:: c++

    class LossFunction {
     public:
      virtual void Evaluate(double s, double out[3]) const = 0;
    };


   The key method is :func:`LossFunction::Evaluate`, which given a
   non-negative scalar ``s``, computes

   .. math:: out = \begin{bmatrix}\rho(s), & \rho'(s), & \rho''(s)\end{bmatrix}

   Here the convention is that the contribution of a term to the cost
   function is given by :math:`\frac{1}{2}\rho(s)`, where :math:`s
   =\|f_i\|^2`. Calling the method with a negative value of :math:`s`
   is an error and the implementations are not required to handle that
   case.

   Most sane choices of :math:`\rho` satisfy:

   .. math::

      \rho(0) &= 0\\
      \rho'(0) &= 1\\
      \rho'(s) &< 1 \text{ in the outlier region}\\
      \rho''(s) &< 0 \text{ in the outlier region}

   so that they mimic the squared cost for small residuals.

   **Scaling**

   Given one robustifier :math:`\rho(s)` one can change the length
   scale at which robustification takes place, by adding a scale
   factor :math:`a > 0` which gives us :math:`\rho(s,a) = a^2 \rho(s /
   a^2)` and the first and second derivatives as :math:`\rho'(s /
   a^2)` and :math:`(1 / a^2) \rho''(s / a^2)` respectively.


   The reason for the appearance of squaring is that :math:`a` is in
   the units of the residual vector norm whereas :math:`s` is a squared
   norm. For applications it is more convenient to specify :math:`a` than
   its square.

Instances
^^^^^^^^^

Ceres includes a number of predefined loss functions. For simplicity
we described their unscaled versions. The figure below illustrates
their shape graphically. More details can be found in
``include/ceres/loss_function.h``.

.. figure:: loss.png
   :figwidth: 500px
   :height: 400px
   :align: center

   Shape of the various common loss functions.

.. class:: TrivialLoss

      .. math:: \rho(s) = s

.. class:: HuberLoss

   .. math:: \rho(s) = \begin{cases} s & s \le 1\\ 2 \sqrt{s} - 1 & s > 1 \end{cases}

.. class:: SoftLOneLoss

   .. math:: \rho(s) = 2 (\sqrt{1+s} - 1)

.. class:: CauchyLoss

   .. math:: \rho(s) = \log(1 + s)

.. class:: ArctanLoss

   .. math:: \rho(s) = \arctan(s)

.. class:: TolerantLoss

   .. math:: \rho(s,a,b) = b \log(1 + e^{(s - a) / b}) - b \log(1 + e^{-a / b})

.. class:: ComposedLoss

   Given two loss functions ``f`` and ``g``, implements the loss
   function ``h(s) = f(g(s))``.

   .. code-block:: c++

      class ComposedLoss : public LossFunction {
       public:
        explicit ComposedLoss(const LossFunction* f,
                              Ownership ownership_f,
                              const LossFunction* g,
                              Ownership ownership_g);
      };

.. class:: ScaledLoss

   Sometimes you want to simply scale the output value of the
   robustifier. For example, you might want to weight different error
   terms differently (e.g., weight pixel reprojection errors
   differently from terrain errors).

   Given a loss function :math:`\rho(s)` and a scalar :math:`a`, :class:`ScaledLoss`
   implements the function :math:`a \rho(s)`.

   Since we treat the a ``NULL`` Loss function as the Identity loss
   function, :math:`rho` = ``NULL``: is a valid input and will result
   in the input being scaled by :math:`a`. This provides a simple way
   of implementing a scaled ResidualBlock.

.. class:: LossFunctionWrapper

   Sometimes after the optimization problem has been constructed, we
   wish to mutate the scale of the loss function. For example, when
   performing estimation from data which has substantial outliers,
   convergence can be improved by starting out with a large scale,
   optimizing the problem and then reducing the scale. This can have
   better convergence behavior than just using a loss function with a
   small scale.

   This templated class allows the user to implement a loss function
   whose scale can be mutated after an optimization problem has been
   constructed. e.g,

   .. code-block:: c++

     Problem problem;

     // Add parameter blocks

     CostFunction* cost_function =
         new AutoDiffCostFunction < UW_Camera_Mapper, 2, 9, 3>(
             new UW_Camera_Mapper(feature_x, feature_y));

     LossFunctionWrapper* loss_function(new HuberLoss(1.0), TAKE_OWNERSHIP);
     problem.AddResidualBlock(cost_function, loss_function, parameters);

     Solver::Options options;
     Solver::Summary summary;
     Solve(options, &problem, &summary);

     loss_function->Reset(new HuberLoss(1.0), TAKE_OWNERSHIP);
     Solve(options, &problem, &summary);


Theory
^^^^^^

Let us consider a problem with a single problem and a single parameter
block.

.. math::

 \min_x \frac{1}{2}\rho(f^2(x))


Then, the robustified gradient and the Gauss-Newton Hessian are

.. math::

        g(x) &= \rho'J^\top(x)f(x)\\
        H(x) &= J^\top(x)\left(\rho' + 2 \rho''f(x)f^\top(x)\right)J(x)

where the terms involving the second derivatives of :math:`f(x)` have
been ignored. Note that :math:`H(x)` is indefinite if
:math:`\rho''f(x)^\top f(x) + \frac{1}{2}\rho' < 0`. If this is not
the case, then its possible to re-weight the residual and the Jacobian
matrix such that the corresponding linear least squares problem for
the robustified Gauss-Newton step.


Let :math:`\alpha` be a root of

.. math:: \frac{1}{2}\alpha^2 - \alpha - \frac{\rho''}{\rho'}\|f(x)\|^2 = 0.


Then, define the rescaled residual and Jacobian as

.. math::

        \tilde{f}(x) &= \frac{\sqrt{\rho'}}{1 - \alpha} f(x)\\
        \tilde{J}(x) &= \sqrt{\rho'}\left(1 - \alpha
                        \frac{f(x)f^\top(x)}{\left\|f(x)\right\|^2} \right)J(x)


In the case :math:`2 \rho''\left\|f(x)\right\|^2 + \rho' \lesssim 0`,
we limit :math:`\alpha \le 1- \epsilon` for some small
:math:`\epsilon`. For more details see [Triggs]_.

With this simple rescaling, one can use any Jacobian based non-linear
least squares algorithm to robustified non-linear least squares
problems.


:class:`LocalParameterization`
------------------------------

.. class:: LocalParameterization

   .. code-block:: c++

     class LocalParameterization {
      public:
       virtual ~LocalParameterization() {}
       virtual bool Plus(const double* x,
                         const double* delta,
                         double* x_plus_delta) const = 0;
       virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0;
       virtual int GlobalSize() const = 0;
       virtual int LocalSize() const = 0;
     };

   Sometimes the parameters :math:`x` can overparameterize a
   problem. In that case it is desirable to choose a parameterization
   to remove the null directions of the cost. More generally, if
   :math:`x` lies on a manifold of a smaller dimension than the
   ambient space that it is embedded in, then it is numerically and
   computationally more effective to optimize it using a
   parameterization that lives in the tangent space of that manifold
   at each point.

   For example, a sphere in three dimensions is a two dimensional
   manifold, embedded in a three dimensional space. At each point on
   the sphere, the plane tangent to it defines a two dimensional
   tangent space. For a cost function defined on this sphere, given a
   point :math:`x`, moving in the direction normal to the sphere at
   that point is not useful. Thus a better way to parameterize a point
   on a sphere is to optimize over two dimensional vector
   :math:`\Delta x` in the tangent space at the point on the sphere
   point and then "move" to the point :math:`x + \Delta x`, where the
   move operation involves projecting back onto the sphere. Doing so
   removes a redundant dimension from the optimization, making it
   numerically more robust and efficient.

   More generally we can define a function

   .. math:: x' = \boxplus(x, \Delta x),

   where :math:`x'` has the same size as :math:`x`, and :math:`\Delta
   x` is of size less than or equal to :math:`x`. The function
   :math:`\boxplus`, generalizes the definition of vector
   addition. Thus it satisfies the identity

   .. math:: \boxplus(x, 0) = x,\quad \forall x.

   Instances of :class:`LocalParameterization` implement the
   :math:`\boxplus` operation and its derivative with respect to
   :math:`\Delta x` at :math:`\Delta x = 0`.


.. function:: int LocalParameterization::GlobalSize()

   The dimension of the ambient space in which the parameter block
   :math:`x` lives.

.. function:: int LocalParamterization::LocaLocalSize()

   The size of the tangent space
   that :math:`\Delta x` lives in.

.. function:: bool LocalParameterization::Plus(const double* x, const double* delta, double* x_plus_delta) const

    :func:`LocalParameterization::Plus` implements :math:`\boxplus(x,\Delta x)`.

.. function:: bool LocalParameterization::ComputeJacobian(const double* x, double* jacobian) const

   Computes the Jacobian matrix

   .. math:: J = \left . \frac{\partial }{\partial \Delta x} \boxplus(x,\Delta x)\right|_{\Delta x = 0}

   in row major form.

Instances
^^^^^^^^^

.. class:: IdentityParameterization

   A trivial version of :math:`\boxplus` is when :math:`\Delta x` is
   of the same size as :math:`x` and

   .. math::  \boxplus(x, \Delta x) = x + \Delta x

.. class:: SubsetParameterization

   A more interesting case if :math:`x` is a two dimensional vector,
   and the user wishes to hold the first coordinate constant. Then,
   :math:`\Delta x` is a scalar and :math:`\boxplus` is defined as

   .. math::

      \boxplus(x, \Delta x) = x + \left[ \begin{array}{c} 0 \\ 1
                                  \end{array} \right] \Delta x

   :class:`SubsetParameterization` generalizes this construction to
   hold any part of a parameter block constant.

.. class:: QuaternionParameterization

   Another example that occurs commonly in Structure from Motion
   problems is when camera rotations are parameterized using a
   quaternion. There, it is useful only to make updates orthogonal to
   that 4-vector defining the quaternion. One way to do this is to let
   :math:`\Delta x` be a 3 dimensional vector and define
   :math:`\boxplus` to be

    .. math:: \boxplus(x, \Delta x) = \left[ \cos(|\Delta x|), \frac{\sin\left(|\Delta x|\right)}{|\Delta x|} \Delta x \right] * x
      :label: quaternion

   The multiplication between the two 4-vectors on the right hand side
   is the standard quaternion
   product. :class:`QuaternionParameterization` is an implementation
   of :eq:`quaternion`.



:class:`AutoDiffLocalParameterization`
--------------------------------------

.. class:: AutoDiffLocalParameterization

  :class:`AutoDiffLocalParameterization` does for
  :class:`LocalParameterization` what :class:`AutoDiffCostFunction`
  does for :class:`CostFunction`. It allows the user to define a
  templated functor that implements the
  :func:`LocalParameterization::Plus` operation and it uses automatic
  differentiation to implement the computation of the Jacobian.

  To get an auto differentiated local parameterization, you must
  define a class with a templated operator() (a functor) that computes

     .. math:: x' = \boxplus(x, \Delta x),

  For example, Quaternions have a three dimensional local
  parameterization. It's plus operation can be implemented as (taken
  from `internal/ceres/auto_diff_local_parameterization_test.cc
  <https://ceres-solver.googlesource.com/ceres-solver/+/master/include/ceres/local_parameterization.h>`_
  )

    .. code-block:: c++

      struct QuaternionPlus {
        template<typename T>
        bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
          const T squared_norm_delta =
              delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];

          T q_delta[4];
          if (squared_norm_delta > T(0.0)) {
            T norm_delta = sqrt(squared_norm_delta);
            const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
            q_delta[0] = cos(norm_delta);
            q_delta[1] = sin_delta_by_delta * delta[0];
            q_delta[2] = sin_delta_by_delta * delta[1];
            q_delta[3] = sin_delta_by_delta * delta[2];
          } else {
            // We do not just use q_delta = [1,0,0,0] here because that is a
            // constant and when used for automatic differentiation will
            // lead to a zero derivative. Instead we take a first order
            // approximation and evaluate it at zero.
            q_delta[0] = T(1.0);
            q_delta[1] = delta[0];
            q_delta[2] = delta[1];
            q_delta[3] = delta[2];
          }

          Quaternionproduct(q_delta, x, x_plus_delta);
          return true;
        }
      };

  Then given this struct, the auto differentiated local
  parameterization can now be constructed as

  .. code-block:: c++

     LocalParameterization* local_parameterization =
         new AutoDiffLocalParameterization<QuaternionPlus, 4, 3>;
                                                           |  |
                                Global Size ---------------+  |
                                Local Size -------------------+

  **WARNING:** Since the functor will get instantiated with different
  types for ``T``, you must to convert from other numeric types to
  ``T`` before mixing computations with other variables of type
  ``T``. In the example above, this is seen where instead of using
  ``k_`` directly, ``k_`` is wrapped with ``T(k_)``.


:class:`Problem`
----------------

.. class:: Problem

   :class:`Problem` holds the robustified non-linear least squares
   problem :eq:`ceresproblem`. To create a least squares problem, use
   the :func:`Problem::AddResidualBlock` and
   :func:`Problem::AddParameterBlock` methods.

   For example a problem containing 3 parameter blocks of sizes 3, 4
   and 5 respectively and two residual blocks of size 2 and 6:

   .. code-block:: c++

     double x1[] = { 1.0, 2.0, 3.0 };
     double x2[] = { 1.0, 2.0, 3.0, 5.0 };
     double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 };

     Problem problem;
     problem.AddResidualBlock(new MyUnaryCostFunction(...), x1);
     problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3);

   :func:`Problem::AddResidualBlock` as the name implies, adds a
   residual block to the problem. It adds a :class:`CostFunction`, an
   optional :class:`LossFunction` and connects the
   :class:`CostFunction` to a set of parameter block.

   The cost function carries with it information about the sizes of
   the parameter blocks it expects. The function checks that these
   match the sizes of the parameter blocks listed in
   ``parameter_blocks``. The program aborts if a mismatch is
   detected. ``loss_function`` can be ``NULL``, in which case the cost
   of the term is just the squared norm of the residuals.

   The user has the option of explicitly adding the parameter blocks
   using :func:`Problem::AddParameterBlock`. This causes additional
   correctness checking; however, :func:`Problem::AddResidualBlock`
   implicitly adds the parameter blocks if they are not present, so
   calling :func:`Problem::AddParameterBlock` explicitly is not
   required.

   :func:`Problem::AddParameterBlock` explicitly adds a parameter
   block to the :class:`Problem`. Optionally it allows the user to
   associate a :class:`LocalParameterization` object with the
   parameter block too. Repeated calls with the same arguments are
   ignored. Repeated calls with the same double pointer but a
   different size results in undefined behavior.

   You can set any parameter block to be constant using
   :func:`Problem::SetParameterBlockConstant` and undo this using
   :func:`SetParameterBlockVariable`.

   In fact you can set any number of parameter blocks to be constant,
   and Ceres is smart enough to figure out what part of the problem
   you have constructed depends on the parameter blocks that are free
   to change and only spends time solving it. So for example if you
   constructed a problem with a million parameter blocks and 2 million
   residual blocks, but then set all but one parameter blocks to be
   constant and say only 10 residual blocks depend on this one
   non-constant parameter block. Then the computational effort Ceres
   spends in solving this problem will be the same if you had defined
   a problem with one parameter block and 10 residual blocks.

   **Ownership**

   :class:`Problem` by default takes ownership of the
   ``cost_function``, ``loss_function`` and ``local_parameterization``
   pointers. These objects remain live for the life of the
   :class:`Problem`. If the user wishes to keep control over the
   destruction of these objects, then they can do this by setting the
   corresponding enums in the :class:`Problem::Options` struct.

   Note that even though the Problem takes ownership of ``cost_function``
   and ``loss_function``, it does not preclude the user from re-using
   them in another residual block. The destructor takes care to call
   delete on each ``cost_function`` or ``loss_function`` pointer only
   once, regardless of how many residual blocks refer to them.

.. function:: ResidualBlockId Problem::AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, const vector<double*> parameter_blocks)

   Add a residual block to the overall cost function. The cost
   function carries with it information about the sizes of the
   parameter blocks it expects. The function checks that these match
   the sizes of the parameter blocks listed in parameter_blocks. The
   program aborts if a mismatch is detected. loss_function can be
   NULL, in which case the cost of the term is just the squared norm
   of the residuals.

   The user has the option of explicitly adding the parameter blocks
   using AddParameterBlock. This causes additional correctness
   checking; however, AddResidualBlock implicitly adds the parameter
   blocks if they are not present, so calling AddParameterBlock
   explicitly is not required.

   The Problem object by default takes ownership of the
   cost_function and loss_function pointers. These objects remain
   live for the life of the Problem object. If the user wishes to
   keep control over the destruction of these objects, then they can
   do this by setting the corresponding enums in the Options struct.

   Note: Even though the Problem takes ownership of cost_function
   and loss_function, it does not preclude the user from re-using
   them in another residual block. The destructor takes care to call
   delete on each cost_function or loss_function pointer only once,
   regardless of how many residual blocks refer to them.

   Example usage:

   .. code-block:: c++

      double x1[] = {1.0, 2.0, 3.0};
      double x2[] = {1.0, 2.0, 5.0, 6.0};
      double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0};

      Problem problem;

      problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1);
      problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1);


.. function:: void Problem::AddParameterBlock(double* values, int size, LocalParameterization* local_parameterization)

   Add a parameter block with appropriate size to the problem.
   Repeated calls with the same arguments are ignored. Repeated calls
   with the same double pointer but a different size results in
   undefined behavior.

.. function:: void Problem::AddParameterBlock(double* values, int size)

   Add a parameter block with appropriate size and parameterization to
   the problem. Repeated calls with the same arguments are
   ignored. Repeated calls with the same double pointer but a
   different size results in undefined behavior.

.. function:: void Problem::RemoveResidualBlock(ResidualBlockId residual_block)

   Remove a residual block from the problem. Any parameters that the residual
   block depends on are not removed. The cost and loss functions for the
   residual block will not get deleted immediately; won't happen until the
   problem itself is deleted.

   **WARNING:** Removing a residual or parameter block will destroy
   the implicit ordering, rendering the jacobian or residuals returned
   from the solver uninterpretable. If you depend on the evaluated
   jacobian, do not use remove! This may change in a future release.
   Hold the indicated parameter block constant during optimization.

.. function:: void Problem::RemoveParameterBlock(double* values)

   Remove a parameter block from the problem. The parameterization of
   the parameter block, if it exists, will persist until the deletion
   of the problem (similar to cost/loss functions in residual block
   removal). Any residual blocks that depend on the parameter are also
   removed, as described above in RemoveResidualBlock().  If
   Problem::Options::enable_fast_parameter_block_removal is true, then
   the removal is fast (almost constant time). Otherwise, removing a
   parameter block will incur a scan of the entire Problem object.

   **WARNING:** Removing a residual or parameter block will destroy
   the implicit ordering, rendering the jacobian or residuals returned
   from the solver uninterpretable. If you depend on the evaluated
   jacobian, do not use remove! This may change in a future release.

.. function:: void Problem::SetParameterBlockConstant(double* values)

   Hold the indicated parameter block constant during optimization.

.. function:: void Problem::SetParameterBlockVariable(double* values)

   Allow the indicated parameter to vary during optimization.

.. function:: void Problem::SetParameterization(double* values, LocalParameterization* local_parameterization)

   Set the local parameterization for one of the parameter blocks.
   The local_parameterization is owned by the Problem by default. It
   is acceptable to set the same parameterization for multiple
   parameters; the destructor is careful to delete local
   parameterizations only once. The local parameterization can only be
   set once per parameter, and cannot be changed once set.

.. function:: int Problem::NumParameterBlocks() const

   Number of parameter blocks in the problem. Always equals
   parameter_blocks().size() and parameter_block_sizes().size().

.. function:: int Problem::NumParameters() const

   The size of the parameter vector obtained by summing over the sizes
   of all the parameter blocks.

.. function:: int Problem::NumResidualBlocks() const

   Number of residual blocks in the problem. Always equals
   residual_blocks().size().

.. function:: int Problem::NumResiduals() const

   The size of the residual vector obtained by summing over the sizes
   of all of the residual blocks.

.. function int Problem::ParameterBlockSize(const double* values) const;

   The size of the parameter block.

.. function int Problem::ParameterBlockLocalSize(const double* values) const;

  The size of local parameterization for the parameter block. If
  there is no local parameterization associated with this parameter
  block, then ``ParameterBlockLocalSize`` = ``ParameterBlockSize``.


.. function void Problem::GetParameterBlocks(vector<double*>* parameter_blocks) const;

  Fills the passed ``parameter_blocks`` vector with pointers to the
  parameter blocks currently in the problem. After this call,
  ``parameter_block.size() == NumParameterBlocks``.

.. function:: bool Problem::Evaluate(const Problem::EvaluateOptions& options, double* cost, vector<double>* residuals, vector<double>* gradient, CRSMatrix* jacobian)

   Evaluate a :class:`Problem`. Any of the output pointers can be
   `NULL`. Which residual blocks and parameter blocks are used is
   controlled by the :class:`Problem::EvaluateOptions` struct below.

   .. code-block:: c++

     Problem problem;
     double x = 1;
     problem.Add(new MyCostFunction, NULL, &x);

     double cost = 0.0;
     problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);

   The cost is evaluated at `x = 1`. If you wish to evaluate the
   problem at `x = 2`, then

   .. code-block:: c++

      x = 2;
      problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL);

   is the way to do so.

   **NOTE** If no local parameterizations are used, then the size of
   the gradient vector is the sum of the sizes of all the parameter
   blocks. If a parameter block has a local parameterization, then
   it contributes "LocalSize" entries to the gradient vector.

.. class:: Problem::EvaluateOptions

   Options struct that is used to control :func:`Problem::Evaluate`.

.. member:: vector<double*> Problem::EvaluateOptions::parameter_blocks

   The set of parameter blocks for which evaluation should be
   performed. This vector determines the order in which parameter
   blocks occur in the gradient vector and in the columns of the
   jacobian matrix. If parameter_blocks is empty, then it is assumed
   to be equal to a vector containing ALL the parameter
   blocks. Generally speaking the ordering of the parameter blocks in
   this case depends on the order in which they were added to the
   problem and whether or not the user removed any parameter blocks.

   **NOTE** This vector should contain the same pointers as the ones
   used to add parameter blocks to the Problem. These parameter block
   should NOT point to new memory locations. Bad things will happen if
   you do.

.. member:: vector<ResidualBlockId> Problem::EvaluateOptions::residual_blocks

   The set of residual blocks for which evaluation should be
   performed. This vector determines the order in which the residuals
   occur, and how the rows of the jacobian are ordered. If
   residual_blocks is empty, then it is assumed to be equal to the
   vector containing all the parameter blocks.

``rotation.h``
--------------

Many applications of Ceres Solver involve optimization problems where
some of the variables correspond to rotations. To ease the pain of
work with the various representations of rotations (angle-axis,
quaternion and matrix) we provide a handy set of templated
functions. These functions are templated so that the user can use them
within Ceres Solver's automatic differentiation framework.

.. function:: void AngleAxisToQuaternion<T>(T const* angle_axis, T* quaternion)

   Convert a value in combined axis-angle representation to a
   quaternion.

   The value ``angle_axis`` is a triple whose norm is an angle in radians,
   and whose direction is aligned with the axis of rotation, and
   ``quaternion`` is a 4-tuple that will contain the resulting quaternion.

.. function:: void QuaternionToAngleAxis<T>(T const* quaternion, T* angle_axis)

   Convert a quaternion to the equivalent combined axis-angle
   representation.

   The value ``quaternion`` must be a unit quaternion - it is not
   normalized first, and ``angle_axis`` will be filled with a value
   whose norm is the angle of rotation in radians, and whose direction
   is the axis of rotation.

.. function:: void RotationMatrixToAngleAxis<T, row_stride, col_stride>(const MatrixAdapter<const T, row_stride, col_stride>& R, T * angle_axis)
.. function:: void AngleAxisToRotationMatrix<T, row_stride, col_stride>(T const * angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: void RotationMatrixToAngleAxis<T>(T const * R, T * angle_axis)
.. function:: void AngleAxisToRotationMatrix<T>(T const * angle_axis, T * R)

   Conversions between 3x3 rotation matrix with given column and row strides and
   axis-angle rotation representations. The functions that take a pointer to T instead
   of a MatrixAdapter assume a column major representation with unit row stride and a column stride of 3.

.. function:: void EulerAnglesToRotationMatrix<T, row_stride, col_stride>(const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: void EulerAnglesToRotationMatrix<T>(const T* euler, int row_stride, T* R)

   Conversions between 3x3 rotation matrix with given column and row strides and
   Euler angle (in degrees) rotation representations.

   The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
   axes, respectively.  They are applied in that same order, so the
   total rotation R is Rz * Ry * Rx.

   The function that takes a pointer to T as the rotation matrix assumes a row
   major representation with unit column stride and a row stride of 3.
   The additional parameter row_stride is required to be 3.

.. function:: void QuaternionToScaledRotation<T, row_stride, col_stride>(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: void QuaternionToScaledRotation<T>(const T q[4], T R[3 * 3])

   Convert a 4-vector to a 3x3 scaled rotation matrix.

   The choice of rotation is such that the quaternion
   :math:`\begin{bmatrix} 1 &0 &0 &0\end{bmatrix}` goes to an identity
   matrix and for small :math:`a, b, c` the quaternion
   :math:`\begin{bmatrix}1 &a &b &c\end{bmatrix}` goes to the matrix

   .. math::

     I + 2 \begin{bmatrix} 0 & -c & b \\ c & 0 & -a\\ -b & a & 0
           \end{bmatrix} + O(q^2)

   which corresponds to a Rodrigues approximation, the last matrix
   being the cross-product matrix of :math:`\begin{bmatrix} a& b&
   c\end{bmatrix}`. Together with the property that :math:`R(q1 * q2)
   = R(q1) * R(q2)` this uniquely defines the mapping from :math:`q` to
   :math:`R`.

   In the function that accepts a pointer to T instead of a MatrixAdapter,
   the rotation matrix ``R`` is a row-major matrix with unit column stride
   and a row stride of 3.

   No normalization of the quaternion is performed, i.e.
   :math:`R = \|q\|^2  Q`, where :math:`Q` is an orthonormal matrix
   such that :math:`\det(Q) = 1` and :math:`Q*Q' = I`.


.. function:: void QuaternionToRotation<T>(const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R)
.. function:: void QuaternionToRotation<T>(const T q[4], T R[3 * 3])

   Same as above except that the rotation matrix is normalized by the
   Frobenius norm, so that :math:`R R' = I` (and :math:`\det(R) = 1`).

.. function:: void UnitQuaternionRotatePoint<T>(const T q[4], const T pt[3], T result[3])

   Rotates a point pt by a quaternion q:

   .. math:: \text{result} = R(q)  \text{pt}

   Assumes the quaternion is unit norm. If you pass in a quaternion
   with :math:`|q|^2 = 2` then you WILL NOT get back 2 times the
   result you get for a unit quaternion.


.. function:: void QuaternionRotatePoint<T>(const T q[4], const T pt[3], T result[3])

   With this function you do not need to assume that q has unit norm.
   It does assume that the norm is non-zero.

.. function:: void QuaternionProduct<T>(const T z[4], const T w[4], T zw[4])

   .. math:: zw = z * w

   where :math:`*` is the Quaternion product between 4-vectors.


.. function:: void CrossProduct<T>(const T x[3], const T y[3], T x_cross_y[3])

   .. math:: \text{x_cross_y} = x \times y

.. function:: void AngleAxisRotatePoint<T>(const T angle_axis[3], const T pt[3], T result[3])

   .. math:: y = R(\text{angle_axis}) x