aboutsummaryrefslogtreecommitdiff
path: root/examples/bundle_adjuster.cc
blob: 78dbd012b8958f7ba364bebdc13f315815a8bb05 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// An example of solving a dynamically sized problem with various
// solvers and loss functions.
//
// For a simpler bare bones example of doing bundle adjustment with
// Ceres, please see simple_bundle_adjuster.cc.
//
// NOTE: This example will not compile without gflags and SuiteSparse.
//
// The problem being solved here is known as a Bundle Adjustment
// problem in computer vision. Given a set of 3d points X_1, ..., X_n,
// a set of cameras P_1, ..., P_m. If the point X_i is visible in
// image j, then there is a 2D observation u_ij that is the expected
// projection of X_i using P_j. The aim of this optimization is to
// find values of X_i and P_j such that the reprojection error
//
//    E(X,P) =  sum_ij  |u_ij - P_j X_i|^2
//
// is minimized.
//
// The problem used here comes from a collection of bundle adjustment
// problems published at University of Washington.
// http://grail.cs.washington.edu/projects/bal

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <string>
#include <vector>

#include "bal_problem.h"
#include "ceres/ceres.h"
#include "ceres/random.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "snavely_reprojection_error.h"

DEFINE_string(input, "", "Input File name");
DEFINE_string(trust_region_strategy, "levenberg_marquardt",
              "Options are: levenberg_marquardt, dogleg.");
DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
              "subspace_dogleg.");

DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
            "refine each successful trust region step.");

DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
            "automatic, cameras, points, cameras,points, points,cameras");

DEFINE_string(linear_solver, "sparse_schur", "Options are: "
              "sparse_schur, dense_schur, iterative_schur, sparse_normal_cholesky, "
              "dense_qr, dense_normal_cholesky and cgnr.");
DEFINE_string(preconditioner, "jacobi", "Options are: "
              "identity, jacobi, schur_jacobi, cluster_jacobi, "
              "cluster_tridiagonal.");
DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
              "Options are: suite_sparse and cx_sparse.");
DEFINE_string(ordering, "automatic", "Options are: automatic, user.");

DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
            "rotations. If false, angle axis is used.");
DEFINE_bool(use_local_parameterization, false, "For quaternions, use a local "
            "parameterization.");
DEFINE_bool(robustify, false, "Use a robust loss function.");

DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
             "accuracy of each linear solve of the truncated newton step. "
             "Changing this parameter can affect solve performance.");

DEFINE_bool(use_block_amd, true, "Use a block oriented fill reducing "
            "ordering.");

DEFINE_int32(num_threads, 1, "Number of threads.");
DEFINE_int32(num_iterations, 5, "Number of iterations.");
DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
            " nonmonotic steps.");

DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
              "perturbation.");
DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
              "translation perturbation.");
DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
              "perturbation.");
DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
             "of the pseudo random number generator used to generate "
             "the pertubations.");
DEFINE_string(solver_log, "", "File to record the solver execution to.");

namespace ceres {
namespace examples {

void SetLinearSolver(Solver::Options* options) {
  CHECK(StringToLinearSolverType(FLAGS_linear_solver,
                                 &options->linear_solver_type));
  CHECK(StringToPreconditionerType(FLAGS_preconditioner,
                                   &options->preconditioner_type));
  CHECK(StringToSparseLinearAlgebraLibraryType(
            FLAGS_sparse_linear_algebra_library,
            &options->sparse_linear_algebra_library));
  options->num_linear_solver_threads = FLAGS_num_threads;
}

void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
  const int num_points = bal_problem->num_points();
  const int point_block_size = bal_problem->point_block_size();
  double* points = bal_problem->mutable_points();

  const int num_cameras = bal_problem->num_cameras();
  const int camera_block_size = bal_problem->camera_block_size();
  double* cameras = bal_problem->mutable_cameras();

  options->use_block_amd = FLAGS_use_block_amd;

  if (options->use_inner_iterations) {
    if (FLAGS_blocks_for_inner_iterations == "cameras") {
      LOG(INFO) << "Camera blocks for inner iterations";
      options->inner_iteration_ordering = new ParameterBlockOrdering;
      for (int i = 0; i < num_cameras; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
      }
    } else if (FLAGS_blocks_for_inner_iterations == "points") {
      LOG(INFO) << "Point blocks for inner iterations";
      options->inner_iteration_ordering = new ParameterBlockOrdering;
      for (int i = 0; i < num_points; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
      }
    } else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
      LOG(INFO) << "Camera followed by point blocks for inner iterations";
      options->inner_iteration_ordering = new ParameterBlockOrdering;
      for (int i = 0; i < num_cameras; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
      }
      for (int i = 0; i < num_points; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
      }
    } else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
      LOG(INFO) << "Point followed by camera blocks for inner iterations";
      options->inner_iteration_ordering = new ParameterBlockOrdering;
      for (int i = 0; i < num_cameras; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
      }
      for (int i = 0; i < num_points; ++i) {
        options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
      }
    } else if (FLAGS_blocks_for_inner_iterations == "automatic") {
      LOG(INFO) << "Choosing automatic blocks for inner iterations";
    } else {
      LOG(FATAL) << "Unknown block type for inner iterations: "
                 << FLAGS_blocks_for_inner_iterations;
    }
  }

  // Bundle adjustment problems have a sparsity structure that makes
  // them amenable to more specialized and much more efficient
  // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
  // ITERATIVE_SCHUR solvers make use of this specialized
  // structure.
  //
  // This can either be done by specifying Options::ordering_type =
  // ceres::SCHUR, in which case Ceres will automatically determine
  // the right ParameterBlock ordering, or by manually specifying a
  // suitable ordering vector and defining
  // Options::num_eliminate_blocks.
  if (FLAGS_ordering == "automatic") {
    return;
  }

  ceres::ParameterBlockOrdering* ordering =
      new ceres::ParameterBlockOrdering;

  // The points come before the cameras.
  for (int i = 0; i < num_points; ++i) {
    ordering->AddElementToGroup(points + point_block_size * i, 0);
  }

  for (int i = 0; i < num_cameras; ++i) {
    // When using axis-angle, there is a single parameter block for
    // the entire camera.
    ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
    // If quaternions are used, there are two blocks, so add the
    // second block to the ordering.
    if (FLAGS_use_quaternions) {
      ordering->AddElementToGroup(cameras + camera_block_size * i + 4, 1);
    }
  }

  options->linear_solver_ordering = ordering;
}

void SetMinimizerOptions(Solver::Options* options) {
  options->max_num_iterations = FLAGS_num_iterations;
  options->minimizer_progress_to_stdout = true;
  options->num_threads = FLAGS_num_threads;
  options->eta = FLAGS_eta;
  options->max_solver_time_in_seconds = FLAGS_max_solver_time;
  options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
  CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
                                        &options->trust_region_strategy_type));
  CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
  options->use_inner_iterations = FLAGS_inner_iterations;
}

void SetSolverOptionsFromFlags(BALProblem* bal_problem,
                               Solver::Options* options) {
  SetMinimizerOptions(options);
  SetLinearSolver(options);
  SetOrdering(bal_problem, options);
}

void BuildProblem(BALProblem* bal_problem, Problem* problem) {
  const int point_block_size = bal_problem->point_block_size();
  const int camera_block_size = bal_problem->camera_block_size();
  double* points = bal_problem->mutable_points();
  double* cameras = bal_problem->mutable_cameras();

  // Observations is 2*num_observations long array observations =
  // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
  // and y positions of the observation.
  const double* observations = bal_problem->observations();

  for (int i = 0; i < bal_problem->num_observations(); ++i) {
    CostFunction* cost_function;
    // Each Residual block takes a point and a camera as input and
    // outputs a 2 dimensional residual.
    if (FLAGS_use_quaternions) {
      cost_function = new AutoDiffCostFunction<
          SnavelyReprojectionErrorWithQuaternions, 2, 4, 6, 3>(
              new SnavelyReprojectionErrorWithQuaternions(
                  observations[2 * i + 0],
                  observations[2 * i + 1]));
    } else {
      cost_function =
          new AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
              new SnavelyReprojectionError(observations[2 * i + 0],
                                           observations[2 * i + 1]));
    }

    // If enabled use Huber's loss function.
    LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;

    // Each observation correponds to a pair of a camera and a point
    // which are identified by camera_index()[i] and point_index()[i]
    // respectively.
    double* camera =
        cameras + camera_block_size * bal_problem->camera_index()[i];
    double* point = points + point_block_size * bal_problem->point_index()[i];

    if (FLAGS_use_quaternions) {
      // When using quaternions, we split the camera into two
      // parameter blocks. One of size 4 for the quaternion and the
      // other of size 6 containing the translation, focal length and
      // the radial distortion parameters.
      problem->AddResidualBlock(cost_function,
                                loss_function,
                                camera,
                                camera + 4,
                                point);
    } else {
      problem->AddResidualBlock(cost_function, loss_function, camera, point);
    }
  }

  if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
    LocalParameterization* quaternion_parameterization =
         new QuaternionParameterization;
    for (int i = 0; i < bal_problem->num_cameras(); ++i) {
      problem->SetParameterization(cameras + camera_block_size * i,
                                   quaternion_parameterization);
    }
  }
}

void SolveProblem(const char* filename) {
  BALProblem bal_problem(filename, FLAGS_use_quaternions);
  Problem problem;

  SetRandomState(FLAGS_random_seed);
  bal_problem.Normalize();
  bal_problem.Perturb(FLAGS_rotation_sigma,
                      FLAGS_translation_sigma,
                      FLAGS_point_sigma);

  BuildProblem(&bal_problem, &problem);
  Solver::Options options;
  SetSolverOptionsFromFlags(&bal_problem, &options);
  options.solver_log = FLAGS_solver_log;
  options.gradient_tolerance = 1e-16;
  options.function_tolerance = 1e-16;
  Solver::Summary summary;
  Solve(options, &problem, &summary);
  std::cout << summary.FullReport() << "\n";
}

}  // namespace examples
}  // namespace ceres

int main(int argc, char** argv) {
  google::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  if (FLAGS_input.empty()) {
    LOG(ERROR) << "Usage: bundle_adjustment_example --input=bal_problem";
    return 1;
  }

  CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
      << "--use_local_parameterization can only be used with "
      << "--use_quaternions.";
  ceres::examples::SolveProblem(FLAGS_input.c_str());
  return 0;
}