aboutsummaryrefslogtreecommitdiff
path: root/examples/ellipse_approximation.cc
blob: a5bbe0206bf39d65c03887f5681a187618cbc330 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: richie.stebbing@gmail.com (Richard Stebbing)
//
// This fits points randomly distributed on an ellipse with an approximate
// line segment contour. This is done by jointly optimizing the control points
// of the line segment contour along with the preimage positions for the data
// points. The purpose of this example is to show an example use case for
// dynamic_sparsity, and how it can benefit problems which are numerically
// dense but dynamically sparse.

#include <cmath>
#include <vector>
#include "ceres/ceres.h"
#include "glog/logging.h"

// Data generated with the following Python code.
//   import numpy as np
//   np.random.seed(1337)
//   t = np.linspace(0.0, 2.0 * np.pi, 212, endpoint=False)
//   t += 2.0 * np.pi * 0.01 * np.random.randn(t.size)
//   theta = np.deg2rad(15)
//   a, b = np.cos(theta), np.sin(theta)
//   R = np.array([[a, -b],
//                 [b, a]])
//   Y = np.dot(np.c_[4.0 * np.cos(t), np.sin(t)], R.T)

const int kYRows = 212;
const int kYCols = 2;
const double kYData[kYRows * kYCols] = {
  +3.871364e+00, +9.916027e-01,
  +3.864003e+00, +1.034148e+00,
  +3.850651e+00, +1.072202e+00,
  +3.868350e+00, +1.014408e+00,
  +3.796381e+00, +1.153021e+00,
  +3.857138e+00, +1.056102e+00,
  +3.787532e+00, +1.162215e+00,
  +3.704477e+00, +1.227272e+00,
  +3.564711e+00, +1.294959e+00,
  +3.754363e+00, +1.191948e+00,
  +3.482098e+00, +1.322725e+00,
  +3.602777e+00, +1.279658e+00,
  +3.585433e+00, +1.286858e+00,
  +3.347505e+00, +1.356415e+00,
  +3.220855e+00, +1.378914e+00,
  +3.558808e+00, +1.297174e+00,
  +3.403618e+00, +1.343809e+00,
  +3.179828e+00, +1.384721e+00,
  +3.054789e+00, +1.398759e+00,
  +3.294153e+00, +1.366808e+00,
  +3.247312e+00, +1.374813e+00,
  +2.988547e+00, +1.404247e+00,
  +3.114508e+00, +1.392698e+00,
  +2.899226e+00, +1.409802e+00,
  +2.533256e+00, +1.414778e+00,
  +2.654773e+00, +1.415909e+00,
  +2.565100e+00, +1.415313e+00,
  +2.976456e+00, +1.405118e+00,
  +2.484200e+00, +1.413640e+00,
  +2.324751e+00, +1.407476e+00,
  +1.930468e+00, +1.378221e+00,
  +2.329017e+00, +1.407688e+00,
  +1.760640e+00, +1.360319e+00,
  +2.147375e+00, +1.396603e+00,
  +1.741989e+00, +1.358178e+00,
  +1.743859e+00, +1.358394e+00,
  +1.557372e+00, +1.335208e+00,
  +1.280551e+00, +1.295087e+00,
  +1.429880e+00, +1.317546e+00,
  +1.213485e+00, +1.284400e+00,
  +9.168172e-01, +1.232870e+00,
  +1.311141e+00, +1.299839e+00,
  +1.231969e+00, +1.287382e+00,
  +7.453773e-01, +1.200049e+00,
  +6.151587e-01, +1.173683e+00,
  +5.935666e-01, +1.169193e+00,
  +2.538707e-01, +1.094227e+00,
  +6.806136e-01, +1.187089e+00,
  +2.805447e-01, +1.100405e+00,
  +6.184807e-01, +1.174371e+00,
  +1.170550e-01, +1.061762e+00,
  +2.890507e-01, +1.102365e+00,
  +3.834234e-01, +1.123772e+00,
  +3.980161e-04, +1.033061e+00,
  -3.651680e-01, +9.370367e-01,
  -8.386351e-01, +7.987201e-01,
  -8.105704e-01, +8.073702e-01,
  -8.735139e-01, +7.878886e-01,
  -9.913836e-01, +7.506100e-01,
  -8.784011e-01, +7.863636e-01,
  -1.181440e+00, +6.882566e-01,
  -1.229556e+00, +6.720191e-01,
  -1.035839e+00, +7.362765e-01,
  -8.031520e-01, +8.096470e-01,
  -1.539136e+00, +5.629549e-01,
  -1.755423e+00, +4.817306e-01,
  -1.337589e+00, +6.348763e-01,
  -1.836966e+00, +4.499485e-01,
  -1.913367e+00, +4.195617e-01,
  -2.126467e+00, +3.314900e-01,
  -1.927625e+00, +4.138238e-01,
  -2.339862e+00, +2.379074e-01,
  -1.881736e+00, +4.322152e-01,
  -2.116753e+00, +3.356163e-01,
  -2.255733e+00, +2.754930e-01,
  -2.555834e+00, +1.368473e-01,
  -2.770277e+00, +2.895711e-02,
  -2.563376e+00, +1.331890e-01,
  -2.826715e+00, -9.000818e-04,
  -2.978191e+00, -8.457804e-02,
  -3.115855e+00, -1.658786e-01,
  -2.982049e+00, -8.678322e-02,
  -3.307892e+00, -2.902083e-01,
  -3.038346e+00, -1.194222e-01,
  -3.190057e+00, -2.122060e-01,
  -3.279086e+00, -2.705777e-01,
  -3.322028e+00, -2.999889e-01,
  -3.122576e+00, -1.699965e-01,
  -3.551973e+00, -4.768674e-01,
  -3.581866e+00, -5.032175e-01,
  -3.497799e+00, -4.315203e-01,
  -3.565384e+00, -4.885602e-01,
  -3.699493e+00, -6.199815e-01,
  -3.585166e+00, -5.061925e-01,
  -3.758914e+00, -6.918275e-01,
  -3.741104e+00, -6.689131e-01,
  -3.688331e+00, -6.077239e-01,
  -3.810425e+00, -7.689015e-01,
  -3.791829e+00, -7.386911e-01,
  -3.789951e+00, -7.358189e-01,
  -3.823100e+00, -7.918398e-01,
  -3.857021e+00, -8.727074e-01,
  -3.858250e+00, -8.767645e-01,
  -3.872100e+00, -9.563174e-01,
  -3.864397e+00, -1.032630e+00,
  -3.846230e+00, -1.081669e+00,
  -3.834799e+00, -1.102536e+00,
  -3.866684e+00, -1.022901e+00,
  -3.808643e+00, -1.139084e+00,
  -3.868840e+00, -1.011569e+00,
  -3.791071e+00, -1.158615e+00,
  -3.797999e+00, -1.151267e+00,
  -3.696278e+00, -1.232314e+00,
  -3.779007e+00, -1.170504e+00,
  -3.622855e+00, -1.270793e+00,
  -3.647249e+00, -1.259166e+00,
  -3.655412e+00, -1.255042e+00,
  -3.573218e+00, -1.291696e+00,
  -3.638019e+00, -1.263684e+00,
  -3.498409e+00, -1.317750e+00,
  -3.304143e+00, -1.364970e+00,
  -3.183001e+00, -1.384295e+00,
  -3.202456e+00, -1.381599e+00,
  -3.244063e+00, -1.375332e+00,
  -3.233308e+00, -1.377019e+00,
  -3.060112e+00, -1.398264e+00,
  -3.078187e+00, -1.396517e+00,
  -2.689594e+00, -1.415761e+00,
  -2.947662e+00, -1.407039e+00,
  -2.854490e+00, -1.411860e+00,
  -2.660499e+00, -1.415900e+00,
  -2.875955e+00, -1.410930e+00,
  -2.675385e+00, -1.415848e+00,
  -2.813155e+00, -1.413363e+00,
  -2.417673e+00, -1.411512e+00,
  -2.725461e+00, -1.415373e+00,
  -2.148334e+00, -1.396672e+00,
  -2.108972e+00, -1.393738e+00,
  -2.029905e+00, -1.387302e+00,
  -2.046214e+00, -1.388687e+00,
  -2.057402e+00, -1.389621e+00,
  -1.650250e+00, -1.347160e+00,
  -1.806764e+00, -1.365469e+00,
  -1.206973e+00, -1.283343e+00,
  -8.029259e-01, -1.211308e+00,
  -1.229551e+00, -1.286993e+00,
  -1.101507e+00, -1.265754e+00,
  -9.110645e-01, -1.231804e+00,
  -1.110046e+00, -1.267211e+00,
  -8.465274e-01, -1.219677e+00,
  -7.594163e-01, -1.202818e+00,
  -8.023823e-01, -1.211203e+00,
  -3.732519e-01, -1.121494e+00,
  -1.918373e-01, -1.079668e+00,
  -4.671988e-01, -1.142253e+00,
  -4.033645e-01, -1.128215e+00,
  -1.920740e-01, -1.079724e+00,
  -3.022157e-01, -1.105389e+00,
  -1.652831e-01, -1.073354e+00,
  +4.671625e-01, -9.085886e-01,
  +5.940178e-01, -8.721832e-01,
  +3.147557e-01, -9.508290e-01,
  +6.383631e-01, -8.591867e-01,
  +9.888923e-01, -7.514088e-01,
  +7.076339e-01, -8.386023e-01,
  +1.326682e+00, -6.386698e-01,
  +1.149834e+00, -6.988221e-01,
  +1.257742e+00, -6.624207e-01,
  +1.492352e+00, -5.799632e-01,
  +1.595574e+00, -5.421766e-01,
  +1.240173e+00, -6.684113e-01,
  +1.706612e+00, -5.004442e-01,
  +1.873984e+00, -4.353002e-01,
  +1.985633e+00, -3.902561e-01,
  +1.722880e+00, -4.942329e-01,
  +2.095182e+00, -3.447402e-01,
  +2.018118e+00, -3.768991e-01,
  +2.422702e+00, -1.999563e-01,
  +2.370611e+00, -2.239326e-01,
  +2.152154e+00, -3.205250e-01,
  +2.525121e+00, -1.516499e-01,
  +2.422116e+00, -2.002280e-01,
  +2.842806e+00, +9.536372e-03,
  +3.030128e+00, +1.146027e-01,
  +2.888424e+00, +3.433444e-02,
  +2.991609e+00, +9.226409e-02,
  +2.924807e+00, +5.445844e-02,
  +3.007772e+00, +1.015875e-01,
  +2.781973e+00, -2.282382e-02,
  +3.164737e+00, +1.961781e-01,
  +3.237671e+00, +2.430139e-01,
  +3.046123e+00, +1.240014e-01,
  +3.414834e+00, +3.669060e-01,
  +3.436591e+00, +3.833600e-01,
  +3.626207e+00, +5.444311e-01,
  +3.223325e+00, +2.336361e-01,
  +3.511963e+00, +4.431060e-01,
  +3.698380e+00, +6.187442e-01,
  +3.670244e+00, +5.884943e-01,
  +3.558833e+00, +4.828230e-01,
  +3.661807e+00, +5.797689e-01,
  +3.767261e+00, +7.030893e-01,
  +3.801065e+00, +7.532650e-01,
  +3.828523e+00, +8.024454e-01,
  +3.840719e+00, +8.287032e-01,
  +3.848748e+00, +8.485921e-01,
  +3.865801e+00, +9.066551e-01,
  +3.870983e+00, +9.404873e-01,
  +3.870263e+00, +1.001884e+00,
  +3.864462e+00, +1.032374e+00,
  +3.870542e+00, +9.996121e-01,
  +3.865424e+00, +1.028474e+00
};
ceres::ConstMatrixRef kY(kYData, kYRows, kYCols);

class PointToLineSegmentContourCostFunction : public ceres::CostFunction {
 public:
  PointToLineSegmentContourCostFunction(const int num_segments,
                                        const Eigen::Vector2d y)
      : num_segments_(num_segments), y_(y) {
    // The first parameter is the preimage position.
    mutable_parameter_block_sizes()->push_back(1);
    // The next parameters are the control points for the line segment contour.
    for (int i = 0; i < num_segments_; ++i) {
      mutable_parameter_block_sizes()->push_back(2);
    }
    set_num_residuals(2);
  }

  virtual bool Evaluate(const double* const* x,
                        double* residuals,
                        double** jacobians) const {
    // Convert the preimage position `t` into a segment index `i0` and the
    // line segment interpolation parameter `u`. `i1` is the index of the next
    // control point.
    const double t = ModuloNumSegments(*x[0]);
    CHECK_GE(t, 0.0);
    CHECK_LT(t, num_segments_);
    const int i0 = floor(t), i1 = (i0 + 1) % num_segments_;
    const double u = t - i0;

    // Linearly interpolate between control points `i0` and `i1`.
    residuals[0] = y_[0] - ((1.0 - u) * x[1 + i0][0] + u * x[1 + i1][0]);
    residuals[1] = y_[1] - ((1.0 - u) * x[1 + i0][1] + u * x[1 + i1][1]);

    if (jacobians == NULL) {
      return true;
    }

    if (jacobians[0] != NULL) {
      jacobians[0][0] = x[1 + i0][0] - x[1 + i1][0];
      jacobians[0][1] = x[1 + i0][1] - x[1 + i1][1];
    }
    for (int i = 0; i < num_segments_; ++i) {
      if (jacobians[i + 1] != NULL) {
        ceres::MatrixRef(jacobians[i + 1], 2, 2).setZero();
        if (i == i0) {
          jacobians[i + 1][0] = -(1.0 - u);
          jacobians[i + 1][3] = -(1.0 - u);
        } else if (i == i1) {
          jacobians[i + 1][0] = -u;
          jacobians[i + 1][3] = -u;
        }
      }
    }
    return true;
  }

  static ceres::CostFunction* Create(const int num_segments,
                                     const Eigen::Vector2d y) {
    return new PointToLineSegmentContourCostFunction(num_segments, y);
  }

 private:
  inline double ModuloNumSegments(const double& t) const {
    return t - num_segments_ * floor(t / num_segments_);
  }

  const int num_segments_;
  const Eigen::Vector2d y_;
};

struct EuclideanDistanceFunctor {
  EuclideanDistanceFunctor(const double& sqrt_weight)
      : sqrt_weight_(sqrt_weight) {}

  template <typename T>
  bool operator()(const T* x0, const T* x1, T* residuals) const {
    residuals[0] = T(sqrt_weight_) * (x0[0] - x1[0]);
    residuals[1] = T(sqrt_weight_) * (x0[1] - x1[1]);
    return true;
  }

  static ceres::CostFunction* Create(const double& sqrt_weight) {
    return new ceres::AutoDiffCostFunction<EuclideanDistanceFunctor, 2, 2, 2>(
        new EuclideanDistanceFunctor(sqrt_weight));
  }

 private:
  const double sqrt_weight_;
};

bool SolveWithFullReport(ceres::Solver::Options options,
                         ceres::Problem* problem,
                         bool dynamic_sparsity) {
  options.dynamic_sparsity = dynamic_sparsity;

  ceres::Solver::Summary summary;
  ceres::Solve(options, problem, &summary);

  std::cout << "####################" << std::endl;
  std::cout << "dynamic_sparsity = " << dynamic_sparsity << std::endl;
  std::cout << "####################" << std::endl;
  std::cout << summary.FullReport() << std::endl;

  return summary.termination_type == ceres::CONVERGENCE;
}

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);

  // Problem configuration.
  const int num_segments = 151;
  const double regularization_weight = 1e-2;

  // Eigen::MatrixXd is column major so we define our own MatrixXd which is
  // row major. Eigen::VectorXd can be used directly.
  typedef Eigen::Matrix<double,
                        Eigen::Dynamic, Eigen::Dynamic,
                        Eigen::RowMajor> MatrixXd;
  using Eigen::VectorXd;

  // `X` is the matrix of control points which make up the contour of line
  // segments. The number of control points is equal to the number of line
  // segments because the contour is closed.
  //
  // Initialize `X` to points on the unit circle.
  VectorXd w(num_segments + 1);
  w.setLinSpaced(num_segments + 1, 0.0, 2.0 * M_PI);
  w.conservativeResize(num_segments);
  MatrixXd X(num_segments, 2);
  X.col(0) = w.array().cos();
  X.col(1) = w.array().sin();

  // Each data point has an associated preimage position on the line segment
  // contour. For each data point we initialize the preimage positions to
  // the index of the closest control point.
  const int num_observations = kY.rows();
  VectorXd t(num_observations);
  for (int i = 0; i < num_observations; ++i) {
    (X.rowwise() - kY.row(i)).rowwise().squaredNorm().minCoeff(&t[i]);
  }

  ceres::Problem problem;

  // For each data point add a residual which measures its distance to its
  // corresponding position on the line segment contour.
  std::vector<double*> parameter_blocks(1 + num_segments);
  parameter_blocks[0] = NULL;
  for (int i = 0; i < num_segments; ++i) {
    parameter_blocks[i + 1] = X.data() + 2 * i;
  }
  for (int i = 0; i < num_observations; ++i) {
    parameter_blocks[0] = &t[i];
    problem.AddResidualBlock(
      PointToLineSegmentContourCostFunction::Create(num_segments, kY.row(i)),
      NULL,
      parameter_blocks);
  }

  // Add regularization to minimize the length of the line segment contour.
  for (int i = 0; i < num_segments; ++i) {
    problem.AddResidualBlock(
      EuclideanDistanceFunctor::Create(sqrt(regularization_weight)),
      NULL,
      X.data() + 2 * i,
      X.data() + 2 * ((i + 1) % num_segments));
  }

  ceres::Solver::Options options;
  options.max_num_iterations = 100;
  options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY;

  // First, solve `X` and `t` jointly with dynamic_sparsity = true.
  MatrixXd X0 = X;
  VectorXd t0 = t;
  CHECK(SolveWithFullReport(options, &problem, true));

  // Second, solve with dynamic_sparsity = false.
  X = X0;
  t = t0;
  CHECK(SolveWithFullReport(options, &problem, false));

  return 0;
}