aboutsummaryrefslogtreecommitdiff
path: root/examples/libmv_homography.cc
blob: 8bc7136fde22788421210b8cfac430dcf88bde31 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2014 libmv authors.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
//
// Author: sergey.vfx@gmail.com (Sergey Sharybin)
//
// This file demonstrates solving for a homography between two sets of points.
// A homography describes a transformation between a sets of points on a plane,
// perspectively projected into two images. The first step is to solve a
// homogeneous system of equations via singular value decompposition, giving an
// algebraic solution for the homography, then solving for a final solution by
// minimizing the symmetric transfer error in image space with Ceres (called the
// Gold Standard Solution in "Multiple View Geometry"). The routines are based on
// the routines from the Libmv library.
//
// This example demonstrates custom exit criterion by having a callback check
// for image-space error.

#include "ceres/ceres.h"
#include "glog/logging.h"

typedef Eigen::NumTraits<double> EigenDouble;

typedef Eigen::MatrixXd Mat;
typedef Eigen::VectorXd Vec;
typedef Eigen::Matrix<double, 3, 3> Mat3;
typedef Eigen::Matrix<double, 2, 1> Vec2;
typedef Eigen::Matrix<double, Eigen::Dynamic,  8> MatX8;
typedef Eigen::Vector3d Vec3;

namespace {

// This structure contains options that controls how the homography
// estimation operates.
//
// Defaults should be suitable for a wide range of use cases, but
// better performance and accuracy might require tweaking.
struct EstimateHomographyOptions {
  // Default settings for homography estimation which should be suitable
  // for a wide range of use cases.
  EstimateHomographyOptions()
    :  max_num_iterations(50),
       expected_average_symmetric_distance(1e-16) {}

  // Maximal number of iterations for the refinement step.
  int max_num_iterations;

  // Expected average of symmetric geometric distance between
  // actual destination points and original ones transformed by
  // estimated homography matrix.
  //
  // Refinement will finish as soon as average of symmetric
  // geometric distance is less or equal to this value.
  //
  // This distance is measured in the same units as input points are.
  double expected_average_symmetric_distance;
};

// Calculate symmetric geometric cost terms:
//
// forward_error = D(H * x1, x2)
// backward_error = D(H^-1 * x2, x1)
//
// Templated to be used with autodifferenciation.
template <typename T>
void SymmetricGeometricDistanceTerms(const Eigen::Matrix<T, 3, 3> &H,
                                     const Eigen::Matrix<T, 2, 1> &x1,
                                     const Eigen::Matrix<T, 2, 1> &x2,
                                     T forward_error[2],
                                     T backward_error[2]) {
  typedef Eigen::Matrix<T, 3, 1> Vec3;
  Vec3 x(x1(0), x1(1), T(1.0));
  Vec3 y(x2(0), x2(1), T(1.0));

  Vec3 H_x = H * x;
  Vec3 Hinv_y = H.inverse() * y;

  H_x /= H_x(2);
  Hinv_y /= Hinv_y(2);

  forward_error[0] = H_x(0) - y(0);
  forward_error[1] = H_x(1) - y(1);
  backward_error[0] = Hinv_y(0) - x(0);
  backward_error[1] = Hinv_y(1) - x(1);
}

// Calculate symmetric geometric cost:
//
//   D(H * x1, x2)^2 + D(H^-1 * x2, x1)^2
//
double SymmetricGeometricDistance(const Mat3 &H,
                                  const Vec2 &x1,
                                  const Vec2 &x2) {
  Vec2 forward_error, backward_error;
  SymmetricGeometricDistanceTerms<double>(H,
                                          x1,
                                          x2,
                                          forward_error.data(),
                                          backward_error.data());
  return forward_error.squaredNorm() +
         backward_error.squaredNorm();
}

// A parameterization of the 2D homography matrix that uses 8 parameters so
// that the matrix is normalized (H(2,2) == 1).
// The homography matrix H is built from a list of 8 parameters (a, b,...g, h)
// as follows
//
//         |a b c|
//     H = |d e f|
//         |g h 1|
//
template<typename T = double>
class Homography2DNormalizedParameterization {
 public:
  typedef Eigen::Matrix<T, 8, 1> Parameters;     // a, b, ... g, h
  typedef Eigen::Matrix<T, 3, 3> Parameterized;  // H

  // Convert from the 8 parameters to a H matrix.
  static void To(const Parameters &p, Parameterized *h) {
    *h << p(0), p(1), p(2),
          p(3), p(4), p(5),
          p(6), p(7), 1.0;
  }

  // Convert from a H matrix to the 8 parameters.
  static void From(const Parameterized &h, Parameters *p) {
    *p << h(0, 0), h(0, 1), h(0, 2),
          h(1, 0), h(1, 1), h(1, 2),
          h(2, 0), h(2, 1);
  }
};

// 2D Homography transformation estimation in the case that points are in
// euclidean coordinates.
//
//   x = H y
//
// x and y vector must have the same direction, we could write
//
//   crossproduct(|x|, * H * |y| ) = |0|
//
//   | 0 -1  x2|   |a b c|   |y1|    |0|
//   | 1  0 -x1| * |d e f| * |y2| =  |0|
//   |-x2  x1 0|   |g h 1|   |1 |    |0|
//
// That gives:
//
//   (-d+x2*g)*y1    + (-e+x2*h)*y2 + -f+x2          |0|
//   (a-x1*g)*y1     + (b-x1*h)*y2  + c-x1         = |0|
//   (-x2*a+x1*d)*y1 + (-x2*b+x1*e)*y2 + -x2*c+x1*f  |0|
//
bool Homography2DFromCorrespondencesLinearEuc(
    const Mat &x1,
    const Mat &x2,
    Mat3 *H,
    double expected_precision) {
  assert(2 == x1.rows());
  assert(4 <= x1.cols());
  assert(x1.rows() == x2.rows());
  assert(x1.cols() == x2.cols());

  int n = x1.cols();
  MatX8 L = Mat::Zero(n * 3, 8);
  Mat b = Mat::Zero(n * 3, 1);
  for (int i = 0; i < n; ++i) {
    int j = 3 * i;
    L(j, 0) =  x1(0, i);             // a
    L(j, 1) =  x1(1, i);             // b
    L(j, 2) =  1.0;                  // c
    L(j, 6) = -x2(0, i) * x1(0, i);  // g
    L(j, 7) = -x2(0, i) * x1(1, i);  // h
    b(j, 0) =  x2(0, i);             // i

    ++j;
    L(j, 3) =  x1(0, i);             // d
    L(j, 4) =  x1(1, i);             // e
    L(j, 5) =  1.0;                  // f
    L(j, 6) = -x2(1, i) * x1(0, i);  // g
    L(j, 7) = -x2(1, i) * x1(1, i);  // h
    b(j, 0) =  x2(1, i);             // i

    // This ensures better stability
    // TODO(julien) make a lite version without this 3rd set
    ++j;
    L(j, 0) =  x2(1, i) * x1(0, i);  // a
    L(j, 1) =  x2(1, i) * x1(1, i);  // b
    L(j, 2) =  x2(1, i);             // c
    L(j, 3) = -x2(0, i) * x1(0, i);  // d
    L(j, 4) = -x2(0, i) * x1(1, i);  // e
    L(j, 5) = -x2(0, i);             // f
  }
  // Solve Lx=B
  const Vec h = L.fullPivLu().solve(b);
  Homography2DNormalizedParameterization<double>::To(h, H);
  return (L * h).isApprox(b, expected_precision);
}

// Cost functor which computes symmetric geometric distance
// used for homography matrix refinement.
class HomographySymmetricGeometricCostFunctor {
 public:
  HomographySymmetricGeometricCostFunctor(const Vec2 &x,
                                          const Vec2 &y)
      : x_(x), y_(y) { }

  template<typename T>
  bool operator()(const T* homography_parameters, T* residuals) const {
    typedef Eigen::Matrix<T, 3, 3> Mat3;
    typedef Eigen::Matrix<T, 2, 1> Vec2;

    Mat3 H(homography_parameters);
    Vec2 x(T(x_(0)), T(x_(1)));
    Vec2 y(T(y_(0)), T(y_(1)));

    SymmetricGeometricDistanceTerms<T>(H,
                                       x,
                                       y,
                                       &residuals[0],
                                       &residuals[2]);
    return true;
  }

  const Vec2 x_;
  const Vec2 y_;
};

// Termination checking callback. This is needed to finish the
// optimization when an absolute error threshold is met, as opposed
// to Ceres's function_tolerance, which provides for finishing when
// successful steps reduce the cost function by a fractional amount.
// In this case, the callback checks for the absolute average reprojection
// error and terminates when it's below a threshold (for example all
// points < 0.5px error).
class TerminationCheckingCallback : public ceres::IterationCallback {
 public:
  TerminationCheckingCallback(const Mat &x1, const Mat &x2,
                              const EstimateHomographyOptions &options,
                              Mat3 *H)
      : options_(options), x1_(x1), x2_(x2), H_(H) {}

  virtual ceres::CallbackReturnType operator()(
      const ceres::IterationSummary& summary) {
    // If the step wasn't successful, there's nothing to do.
    if (!summary.step_is_successful) {
      return ceres::SOLVER_CONTINUE;
    }

    // Calculate average of symmetric geometric distance.
    double average_distance = 0.0;
    for (int i = 0; i < x1_.cols(); i++) {
      average_distance += SymmetricGeometricDistance(*H_,
                                                     x1_.col(i),
                                                     x2_.col(i));
    }
    average_distance /= x1_.cols();

    if (average_distance <= options_.expected_average_symmetric_distance) {
      return ceres::SOLVER_TERMINATE_SUCCESSFULLY;
    }

    return ceres::SOLVER_CONTINUE;
  }

 private:
  const EstimateHomographyOptions &options_;
  const Mat &x1_;
  const Mat &x2_;
  Mat3 *H_;
};

bool EstimateHomography2DFromCorrespondences(
    const Mat &x1,
    const Mat &x2,
    const EstimateHomographyOptions &options,
    Mat3 *H) {
  assert(2 == x1.rows());
  assert(4 <= x1.cols());
  assert(x1.rows() == x2.rows());
  assert(x1.cols() == x2.cols());

  // Step 1: Algebraic homography estimation.
  // Assume algebraic estimation always succeeds.
  Homography2DFromCorrespondencesLinearEuc(x1,
                                           x2,
                                           H,
                                           EigenDouble::dummy_precision());

  LOG(INFO) << "Estimated matrix after algebraic estimation:\n" << *H;

  // Step 2: Refine matrix using Ceres minimizer.
  ceres::Problem problem;
  for (int i = 0; i < x1.cols(); i++) {
    HomographySymmetricGeometricCostFunctor
        *homography_symmetric_geometric_cost_function =
            new HomographySymmetricGeometricCostFunctor(x1.col(i),
                                                        x2.col(i));

    problem.AddResidualBlock(
        new ceres::AutoDiffCostFunction<
            HomographySymmetricGeometricCostFunctor,
            4,  // num_residuals
            9>(homography_symmetric_geometric_cost_function),
        NULL,
        H->data());
  }

  // Configure the solve.
  ceres::Solver::Options solver_options;
  solver_options.linear_solver_type = ceres::DENSE_QR;
  solver_options.max_num_iterations = options.max_num_iterations;
  solver_options.update_state_every_iteration = true;

  // Terminate if the average symmetric distance is good enough.
  TerminationCheckingCallback callback(x1, x2, options, H);
  solver_options.callbacks.push_back(&callback);

  // Run the solve.
  ceres::Solver::Summary summary;
  ceres::Solve(solver_options, &problem, &summary);

  LOG(INFO) << "Summary:\n" << summary.FullReport();
  LOG(INFO) << "Final refined matrix:\n" << *H;

  return summary.IsSolutionUsable();
}

}  // namespace libmv

int main(int argc, char **argv) {
  google::InitGoogleLogging(argv[0]);

  Mat x1(2, 100);
  for (int i = 0; i < x1.cols(); ++i) {
    x1(0, i) = rand() % 1024;
    x1(1, i) = rand() % 1024;
  }

  Mat3 homography_matrix;
  // This matrix has been dumped from a Blender test file of plane tracking.
  homography_matrix << 1.243715, -0.461057, -111.964454,
                       0.0,       0.617589, -192.379252,
                       0.0,      -0.000983,    1.0;

  Mat x2 = x1;
  for (int i = 0; i < x2.cols(); ++i) {
    Vec3 homogenous_x1 = Vec3(x1(0, i), x1(1, i), 1.0);
    Vec3 homogenous_x2 = homography_matrix * homogenous_x1;
    x2(0, i) = homogenous_x2(0) / homogenous_x2(2);
    x2(1, i) = homogenous_x2(1) / homogenous_x2(2);

    // Apply some noise so algebraic estimation is not good enough.
    x2(0, i) += static_cast<double>(rand() % 1000) / 5000.0;
    x2(1, i) += static_cast<double>(rand() % 1000) / 5000.0;
  }

  Mat3 estimated_matrix;

  EstimateHomographyOptions options;
  options.expected_average_symmetric_distance = 0.02;
  EstimateHomography2DFromCorrespondences(x1, x2, options, &estimated_matrix);

  // Normalize the matrix for easier comparison.
  estimated_matrix /= estimated_matrix(2 ,2);

  std::cout << "Original matrix:\n" << homography_matrix << "\n";
  std::cout << "Estimated matrix:\n" << estimated_matrix << "\n";

  return EXIT_SUCCESS;
}