aboutsummaryrefslogtreecommitdiff
path: root/examples/robot_pose_mle.cc
blob: e1a1dd02357c1ed5e35cd602c1ad3d8040261d55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: joydeepb@ri.cmu.edu (Joydeep Biswas)
//
// This example demonstrates how to use the DynamicAutoDiffCostFunction
// variant of CostFunction. The DynamicAutoDiffCostFunction is meant to
// be used in cases where the number of parameter blocks or the sizes are not
// known at compile time.
//
// This example simulates a robot traversing down a 1-dimension hallway with
// noise odometry readings and noisy range readings of the end of the hallway.
// By fusing the noisy odometry and sensor readings this example demonstrates
// how to compute the maximum likelihood estimate (MLE) of the robot's pose at
// each timestep.
//
// The robot starts at the origin, and it is travels to the end of a corridor of
// fixed length specified by the "--corridor_length" flag. It executes a series
// of motion commands to move forward a fixed length, specified by the
// "--pose_separation" flag, at which pose it receives relative odometry
// measurements as well as a range reading of the distance to the end of the
// hallway. The odometry readings are drawn with Gaussian noise and standard
// deviation specified by the "--odometry_stddev" flag, and the range readings
// similarly with standard deviation specified by the "--range-stddev" flag.
//
// There are two types of residuals in this problem:
// 1) The OdometryConstraint residual, that accounts for the odometry readings
//    between successive pose estimatess of the robot.
// 2) The RangeConstraint residual, that accounts for the errors in the observed
//    range readings from each pose.
//
// The OdometryConstraint residual is modeled as an AutoDiffCostFunction with
// a fixed parameter block size of 1, which is the relative odometry being
// solved for, between a pair of successive poses of the robot. Differences
// between observed and computed relative odometry values are penalized weighted
// by the known standard deviation of the odometry readings.
//
// The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction
// which sums up the relative odometry estimates to compute the estimated
// global pose of the robot, and then computes the expected range reading.
// Differences between the observed and expected range readings are then
// penalized weighted by the standard deviation of readings of the sensor.
// Since the number of poses of the robot is not known at compile time, this
// cost function is implemented as a DynamicAutoDiffCostFunction.
//
// The outputs of the example are the initial values of the odometry and range
// readings, and the range and odometry errors for every pose of the robot.
// After computing the MLE, the computed poses and corrected odometry values
// are printed out, along with the corresponding range and odometry errors. Note
// that as an MLE of a noisy system the errors will not be reduced to zero, but
// the odometry estimates will be updated to maximize the joint likelihood of
// all odometry and range readings of the robot.
//
// Mathematical Formulation
// ======================================================
//
// Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the
// corridor starting from p_0 and ending at p_N. We assume that p_0 is the
// origin of the coordinate system.
// Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i,
// and range reading y_i is the range reading of the end of the corridor from
// pose p_i. Both odometry as well as range readings are noisy, but we wish to
// compute the maximum likelihood estimate (MLE) of corrected odometry values
// u*_0 to u*_(N-1), such that the Belief is optimized:
//
// Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                                  1.
//   =        P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1))                            2.
//   \propto  P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1))  3.
//   =       \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) }                       4.
//
// Here, the subscript "(0:i)" is used as shorthand to indicate entries from all
// timesteps 0 to i for that variable, both inclusive.
//
// Bayes' rule is used to derive eq. 3 from 2, and the independence of
// odometry observations and range readings is expolited to derive 4 from 3.
//
// Thus, the Belief, up to scale, is factored as a product of a number of
// terms, two for each pose, where for each pose term there is one term for the
// range reading, P(y_i | u*_(0:i) and one term for the odometry reading,
// P(u*_i | u_i) . Note that the term for the range reading is dependent on all
// odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only
// on a single value, u_i. Both the range reading as well as odoemtry
// probability terms are modeled as the Normal distribution, and have the form:
//
// p(x) \propto \exp{-((x - x_mean) / x_stddev)^2}
//
// where x refers to either the MLE odometry u* or range reading y, and x_mean
// is the corresponding mean value, u for the odometry terms, and y_expected,
// the expected range reading based on all the previous odometry terms.
// The MLE is thus found by finding those values x* which minimize:
//
// x* = \arg\min{((x - x_mean) / x_stddev)^2}
//
// which is in the nonlinear least-square form, suited to being solved by Ceres.
// The non-linear component arise from the computation of x_mean. The residuals
// ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As
// mentioned earlier, the odometry term for each pose depends only on one
// variable, and will be computed by an AutoDiffCostFunction, while the term
// for the range reading will depend on all previous odometry observations, and
// will be computed by a DynamicAutoDiffCostFunction since the number of
// odoemtry observations will only be known at run time.

#include <cstdio>
#include <math.h>
#include <vector>

#include "ceres/ceres.h"
#include "ceres/dynamic_autodiff_cost_function.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "random.h"

using ceres::AutoDiffCostFunction;
using ceres::DynamicAutoDiffCostFunction;
using ceres::CauchyLoss;
using ceres::CostFunction;
using ceres::LossFunction;
using ceres::Problem;
using ceres::Solve;
using ceres::Solver;
using ceres::examples::RandNormal;
using std::min;
using std::vector;

DEFINE_double(corridor_length, 30.0, "Length of the corridor that the robot is "
              "travelling down.");

DEFINE_double(pose_separation, 0.5, "The distance that the robot traverses "
              "between successive odometry updates.");

DEFINE_double(odometry_stddev, 0.1, "The standard deviation of "
              "odometry error of the robot.");

DEFINE_double(range_stddev, 0.01, "The standard deviation of range readings of "
              "the robot.");

// The stride length of the dynamic_autodiff_cost_function evaluator.
static const int kStride = 10;

struct OdometryConstraint {
  typedef AutoDiffCostFunction<OdometryConstraint, 1, 1> OdometryCostFunction;

  OdometryConstraint(double odometry_mean, double odometry_stddev) :
      odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {}

  template <typename T>
  bool operator()(const T* const odometry, T* residual) const {
    *residual = (*odometry - T(odometry_mean)) / T(odometry_stddev);
    return true;
  }

  static OdometryCostFunction* Create(const double odometry_value) {
    return new OdometryCostFunction(
        new OdometryConstraint(odometry_value, FLAGS_odometry_stddev));
  }

  const double odometry_mean;
  const double odometry_stddev;
};

struct RangeConstraint {
  typedef DynamicAutoDiffCostFunction<RangeConstraint, kStride>
      RangeCostFunction;

  RangeConstraint(
      int pose_index,
      double range_reading,
      double range_stddev,
      double corridor_length) :
      pose_index(pose_index), range_reading(range_reading),
      range_stddev(range_stddev), corridor_length(corridor_length) {}

  template <typename T>
  bool operator()(T const* const* relative_poses, T* residuals) const {
    T global_pose(0);
    for (int i = 0; i <= pose_index; ++i) {
      global_pose += relative_poses[i][0];
    }
    residuals[0] = (global_pose + T(range_reading) - T(corridor_length)) /
        T(range_stddev);
    return true;
  }

  // Factory method to create a CostFunction from a RangeConstraint to
  // conveniently add to a ceres problem.
  static RangeCostFunction* Create(const int pose_index,
                                   const double range_reading,
                                   vector<double>* odometry_values,
                                   vector<double*>* parameter_blocks) {
    RangeConstraint* constraint = new RangeConstraint(
        pose_index, range_reading, FLAGS_range_stddev, FLAGS_corridor_length);
    RangeCostFunction* cost_function = new RangeCostFunction(constraint);
    // Add all the parameter blocks that affect this constraint.
    parameter_blocks->clear();
    for (int i = 0; i <= pose_index; ++i) {
      parameter_blocks->push_back(&((*odometry_values)[i]));
      cost_function->AddParameterBlock(1);
    }
    cost_function->SetNumResiduals(1);
    return (cost_function);
  }

  const int pose_index;
  const double range_reading;
  const double range_stddev;
  const double corridor_length;
};

void SimulateRobot(vector<double>* odometry_values,
                   vector<double>* range_readings) {
  const int num_steps = static_cast<int>(
      ceil(FLAGS_corridor_length / FLAGS_pose_separation));

  // The robot starts out at the origin.
  double robot_location = 0.0;
  for (int i = 0; i < num_steps; ++i) {
    const double actual_odometry_value = min(
        FLAGS_pose_separation, FLAGS_corridor_length - robot_location);
    robot_location += actual_odometry_value;
    const double actual_range = FLAGS_corridor_length - robot_location;
    const double observed_odometry =
        RandNormal() * FLAGS_odometry_stddev + actual_odometry_value;
    const double observed_range =
        RandNormal() * FLAGS_range_stddev + actual_range;
    odometry_values->push_back(observed_odometry);
    range_readings->push_back(observed_range);
  }
}

void PrintState(const vector<double>& odometry_readings,
                const vector<double>& range_readings) {
  CHECK_EQ(odometry_readings.size(), range_readings.size());
  double robot_location = 0.0;
  printf("pose: location     odom    range  r.error  o.error\n");
  for (int i = 0; i < odometry_readings.size(); ++i) {
    robot_location += odometry_readings[i];
    const double range_error =
        robot_location + range_readings[i] - FLAGS_corridor_length;
    const double odometry_error =
        FLAGS_pose_separation - odometry_readings[i];
    printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n",
           static_cast<int>(i), robot_location, odometry_readings[i],
           range_readings[i], range_error, odometry_error);
  }
}

int main(int argc, char** argv) {
  google::InitGoogleLogging(argv[0]);
  google::ParseCommandLineFlags(&argc, &argv, true);
  // Make sure that the arguments parsed are all positive.
  CHECK_GT(FLAGS_corridor_length, 0.0);
  CHECK_GT(FLAGS_pose_separation, 0.0);
  CHECK_GT(FLAGS_odometry_stddev, 0.0);
  CHECK_GT(FLAGS_range_stddev, 0.0);

  vector<double> odometry_values;
  vector<double> range_readings;
  SimulateRobot(&odometry_values, &range_readings);

  printf("Initial values:\n");
  PrintState(odometry_values, range_readings);
  ceres::Problem problem;

  for (int i = 0; i < odometry_values.size(); ++i) {
    // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from
    // pose i.
    vector<double*> parameter_blocks;
    RangeConstraint::RangeCostFunction* range_cost_function =
        RangeConstraint::Create(
            i, range_readings[i], &odometry_values, &parameter_blocks);
    problem.AddResidualBlock(range_cost_function, NULL, parameter_blocks);

    // Create and add an AutoDiffCostFunction for the OdometryConstraint for
    // pose i.
    problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]),
                             NULL,
                             &(odometry_values[i]));
  }

  ceres::Solver::Options solver_options;
  solver_options.minimizer_progress_to_stdout = true;

  Solver::Summary summary;
  printf("Solving...\n");
  Solve(solver_options, &problem, &summary);
  printf("Done.\n");
  std::cout << summary.FullReport() << "\n";
  printf("Final values:\n");
  PrintState(odometry_values, range_readings);
  return 0;
}