aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/gradient_checking_cost_function.cc
blob: 3edf95da6e006eab293590cc98e299d22e66aac9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)

#include "ceres/gradient_checking_cost_function.h"

#include <algorithm>
#include <cmath>
#include <numeric>
#include <string>
#include <vector>

#include "ceres/cost_function.h"
#include "ceres/internal/eigen.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/parameter_block.h"
#include "ceres/problem.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/runtime_numeric_diff_cost_function.h"
#include "ceres/stringprintf.h"
#include "ceres/types.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {
namespace {

// True if x and y have an absolute relative difference less than
// relative_precision and false otherwise. Stores the relative and absolute
// difference in relative/absolute_error if non-NULL.
bool IsClose(double x, double y, double relative_precision,
             double *relative_error,
             double *absolute_error) {
  double local_absolute_error;
  double local_relative_error;
  if (!absolute_error) {
    absolute_error = &local_absolute_error;
  }
  if (!relative_error) {
    relative_error = &local_relative_error;
  }
  *absolute_error = fabs(x - y);
  *relative_error = *absolute_error / max(fabs(x), fabs(y));
  if (x == 0 || y == 0) {
    // If x or y is exactly zero, then relative difference doesn't have any
    // meaning. Take the absolute difference instead.
    *relative_error = *absolute_error;
  }
  return fabs(*relative_error) < fabs(relative_precision);
}

class GradientCheckingCostFunction : public CostFunction {
 public:
  GradientCheckingCostFunction(const CostFunction* function,
                               double relative_step_size,
                               double relative_precision,
                               const string& extra_info)
      : function_(function),
        finite_diff_cost_function_(
            CreateRuntimeNumericDiffCostFunction(function,
                                                 CENTRAL,
                                                 relative_step_size)),
        relative_precision_(relative_precision),
        extra_info_(extra_info) {
    *mutable_parameter_block_sizes() = function->parameter_block_sizes();
    set_num_residuals(function->num_residuals());
  }

  virtual ~GradientCheckingCostFunction() { }

  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) const {
    if (!jacobians) {
      // Nothing to check in this case; just forward.
      return function_->Evaluate(parameters, residuals, NULL);
    }

    int num_residuals = function_->num_residuals();

    // Make space for the jacobians of the two methods.
    const vector<int16>& block_sizes = function_->parameter_block_sizes();
    vector<Matrix> term_jacobians(block_sizes.size());
    vector<Matrix> finite_difference_jacobians(block_sizes.size());
    vector<double*> term_jacobian_pointers(block_sizes.size());
    vector<double*> finite_difference_jacobian_pointers(block_sizes.size());
    for (int i = 0; i < block_sizes.size(); i++) {
      term_jacobians[i].resize(num_residuals, block_sizes[i]);
      term_jacobian_pointers[i] = term_jacobians[i].data();
      finite_difference_jacobians[i].resize(num_residuals, block_sizes[i]);
      finite_difference_jacobian_pointers[i] =
          finite_difference_jacobians[i].data();
    }

    // Evaluate the derivative using the user supplied code.
    if (!function_->Evaluate(parameters,
                             residuals,
                             &term_jacobian_pointers[0])) {
      LOG(WARNING) << "Function evaluation failed.";
      return false;
    }

    // Evaluate the derivative using numeric derivatives.
    finite_diff_cost_function_->Evaluate(
        parameters,
        residuals,
        &finite_difference_jacobian_pointers[0]);

    // See if any elements have relative error larger than the threshold.
    int num_bad_jacobian_components = 0;
    double worst_relative_error = 0;

    // Accumulate the error message for all the jacobians, since it won't get
    // output if there are no bad jacobian components.
    string m;
    for (int k = 0; k < block_sizes.size(); k++) {
      // Copy the original jacobian blocks into the jacobians array.
      if (jacobians[k] != NULL) {
        MatrixRef(jacobians[k],
                  term_jacobians[k].rows(),
                  term_jacobians[k].cols()) = term_jacobians[k];
      }

      StringAppendF(&m,
                    "========== "
                    "Jacobian for " "block %d: (%ld by %ld)) "
                    "==========\n",
                    k,
                    static_cast<long>(term_jacobians[k].rows()),
                    static_cast<long>(term_jacobians[k].cols()));
      // The funny spacing creates appropriately aligned column headers.
      m += " block  row  col        user dx/dy    num diff dx/dy         "
           "abs error    relative error         parameter          residual\n";

      for (int i = 0; i < term_jacobians[k].rows(); i++) {
        for (int j = 0; j < term_jacobians[k].cols(); j++) {
          double term_jacobian = term_jacobians[k](i, j);
          double finite_jacobian = finite_difference_jacobians[k](i, j);
          double relative_error, absolute_error;
          bool bad_jacobian_entry =
              !IsClose(term_jacobian,
                       finite_jacobian,
                       relative_precision_,
                       &relative_error,
                       &absolute_error);
          worst_relative_error = std::max(worst_relative_error,
                                          relative_error);

          StringAppendF(&m, "%6d %4d %4d %17g %17g %17g %17g %17g %17g",
                        k, i, j,
                        term_jacobian, finite_jacobian,
                        absolute_error, relative_error,
                        parameters[k][j],
                        residuals[i]);

          if (bad_jacobian_entry) {
            num_bad_jacobian_components++;
            StringAppendF(
                &m, " ------ (%d,%d,%d) Relative error worse than %g",
                k, i, j, relative_precision_);
          }
          m += "\n";
        }
      }
    }

    // Since there were some bad errors, dump comprehensive debug info.
    if (num_bad_jacobian_components) {
      string header = StringPrintf("Detected %d bad jacobian component(s). "
                                   "Worst relative error was %g.\n",
                                   num_bad_jacobian_components,
                                   worst_relative_error);
      if (!extra_info_.empty()) {
        header += "Extra info for this residual: " + extra_info_ + "\n";
      }
      LOG(WARNING) << "\n" << header << m;
    }
    return true;
  }

 private:
  const CostFunction* function_;
  internal::scoped_ptr<CostFunction> finite_diff_cost_function_;
  double relative_precision_;
  string extra_info_;
};

}  // namespace

CostFunction *CreateGradientCheckingCostFunction(
    const CostFunction *cost_function,
    double relative_step_size,
    double relative_precision,
    const string& extra_info) {
  return new GradientCheckingCostFunction(cost_function,
                                          relative_step_size,
                                          relative_precision,
                                          extra_info);
}

ProblemImpl* CreateGradientCheckingProblemImpl(ProblemImpl* problem_impl,
                                               double relative_step_size,
                                               double relative_precision) {
  // We create new CostFunctions by wrapping the original CostFunction
  // in a gradient checking CostFunction. So its okay for the
  // ProblemImpl to take ownership of it and destroy it. The
  // LossFunctions and LocalParameterizations are reused and since
  // they are owned by problem_impl, gradient_checking_problem_impl
  // should not take ownership of it.
  Problem::Options gradient_checking_problem_options;
  gradient_checking_problem_options.cost_function_ownership = TAKE_OWNERSHIP;
  gradient_checking_problem_options.loss_function_ownership =
      DO_NOT_TAKE_OWNERSHIP;
  gradient_checking_problem_options.local_parameterization_ownership =
      DO_NOT_TAKE_OWNERSHIP;

  ProblemImpl* gradient_checking_problem_impl = new ProblemImpl(
      gradient_checking_problem_options);

  Program* program = problem_impl->mutable_program();

  // For every ParameterBlock in problem_impl, create a new parameter
  // block with the same local parameterization and constancy.
  const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
  for (int i = 0; i < parameter_blocks.size(); ++i) {
    ParameterBlock* parameter_block = parameter_blocks[i];
    gradient_checking_problem_impl->AddParameterBlock(
        parameter_block->mutable_user_state(),
        parameter_block->Size(),
        parameter_block->mutable_local_parameterization());

    if (parameter_block->IsConstant()) {
      gradient_checking_problem_impl->SetParameterBlockConstant(
          parameter_block->mutable_user_state());
    }
  }

  // For every ResidualBlock in problem_impl, create a new
  // ResidualBlock by wrapping its CostFunction inside a
  // GradientCheckingCostFunction.
  const vector<ResidualBlock*>& residual_blocks = program->residual_blocks();
  for (int i = 0; i < residual_blocks.size(); ++i) {
    ResidualBlock* residual_block = residual_blocks[i];

    // Build a human readable string which identifies the
    // ResidualBlock. This is used by the GradientCheckingCostFunction
    // when logging debugging information.
    string extra_info = StringPrintf(
        "Residual block id %d; depends on parameters [", i);
    vector<double*> parameter_blocks;
    for (int j = 0; j < residual_block->NumParameterBlocks(); ++j) {
      ParameterBlock* parameter_block = residual_block->parameter_blocks()[j];
      parameter_blocks.push_back(parameter_block->mutable_user_state());
      StringAppendF(&extra_info, "%p", parameter_block->mutable_user_state());
      extra_info += (j < residual_block->NumParameterBlocks() - 1) ? ", " : "]";
    }

    // Wrap the original CostFunction in a GradientCheckingCostFunction.
    CostFunction* gradient_checking_cost_function =
        CreateGradientCheckingCostFunction(residual_block->cost_function(),
                                           relative_step_size,
                                           relative_precision,
                                           extra_info);

    // The const_cast is necessary because
    // ProblemImpl::AddResidualBlock can potentially take ownership of
    // the LossFunction, but in this case we are guaranteed that this
    // will not be the case, so this const_cast is harmless.
    gradient_checking_problem_impl->AddResidualBlock(
        gradient_checking_cost_function,
        const_cast<LossFunction*>(residual_block->loss_function()),
        parameter_blocks);
  }

  return gradient_checking_problem_impl;
}


}  // namespace internal
}  // namespace ceres