aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/line_search.cc
blob: 8323896915a5483ebe004f09e7ea0975060a8fa0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
#include "ceres/line_search.h"

#include "ceres/fpclassify.h"
#include "ceres/evaluator.h"
#include "ceres/internal/eigen.h"
#include "ceres/polynomial.h"
#include "ceres/stringprintf.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {
namespace {

FunctionSample ValueSample(const double x, const double value) {
  FunctionSample sample;
  sample.x = x;
  sample.value = value;
  sample.value_is_valid = true;
  return sample;
};

FunctionSample ValueAndGradientSample(const double x,
                                      const double value,
                                      const double gradient) {
  FunctionSample sample;
  sample.x = x;
  sample.value = value;
  sample.gradient = gradient;
  sample.value_is_valid = true;
  sample.gradient_is_valid = true;
  return sample;
};

}  // namespace

// Convenience stream operator for pushing FunctionSamples into log messages.
std::ostream& operator<<(std::ostream &os,
                         const FunctionSample& sample) {
  os << "[x: " << sample.x << ", value: " << sample.value
     << ", gradient: " << sample.gradient << ", value_is_valid: "
     << std::boolalpha << sample.value_is_valid << ", gradient_is_valid: "
     << std::boolalpha << sample.gradient_is_valid << "]";
  return os;
}

LineSearch::LineSearch(const LineSearch::Options& options)
    : options_(options) {}

LineSearch* LineSearch::Create(const LineSearchType line_search_type,
                               const LineSearch::Options& options,
                               string* error) {
  LineSearch* line_search = NULL;
  switch (line_search_type) {
  case ceres::ARMIJO:
    line_search = new ArmijoLineSearch(options);
    break;
  case ceres::WOLFE:
    line_search = new WolfeLineSearch(options);
    break;
  default:
    *error = string("Invalid line search algorithm type: ") +
        LineSearchTypeToString(line_search_type) +
        string(", unable to create line search.");
    return NULL;
  }
  return line_search;
}

LineSearchFunction::LineSearchFunction(Evaluator* evaluator)
    : evaluator_(evaluator),
      position_(evaluator->NumParameters()),
      direction_(evaluator->NumEffectiveParameters()),
      evaluation_point_(evaluator->NumParameters()),
      scaled_direction_(evaluator->NumEffectiveParameters()),
      gradient_(evaluator->NumEffectiveParameters()) {
}

void LineSearchFunction::Init(const Vector& position,
                              const Vector& direction) {
  position_ = position;
  direction_ = direction;
}

bool LineSearchFunction::Evaluate(double x, double* f, double* g) {
  scaled_direction_ = x * direction_;
  if (!evaluator_->Plus(position_.data(),
                        scaled_direction_.data(),
                        evaluation_point_.data())) {
    return false;
  }

  if (g == NULL) {
    return (evaluator_->Evaluate(evaluation_point_.data(),
                                  f, NULL, NULL, NULL) &&
            IsFinite(*f));
  }

  if (!evaluator_->Evaluate(evaluation_point_.data(),
                            f,
                            NULL,
                            gradient_.data(), NULL)) {
    return false;
  }

  *g = direction_.dot(gradient_);
  return IsFinite(*f) && IsFinite(*g);
}

double LineSearchFunction::DirectionInfinityNorm() const {
  return direction_.lpNorm<Eigen::Infinity>();
}

// Returns step_size \in [min_step_size, max_step_size] which minimizes the
// polynomial of degree defined by interpolation_type which interpolates all
// of the provided samples with valid values.
double LineSearch::InterpolatingPolynomialMinimizingStepSize(
    const LineSearchInterpolationType& interpolation_type,
    const FunctionSample& lowerbound,
    const FunctionSample& previous,
    const FunctionSample& current,
    const double min_step_size,
    const double max_step_size) const {
  if (!current.value_is_valid ||
      (interpolation_type == BISECTION &&
       max_step_size <= current.x)) {
    // Either: sample is invalid; or we are using BISECTION and contracting
    // the step size.
    return min(max(current.x * 0.5, min_step_size), max_step_size);
  } else if (interpolation_type == BISECTION) {
    CHECK_GT(max_step_size, current.x);
    // We are expanding the search (during a Wolfe bracketing phase) using
    // BISECTION interpolation.  Using BISECTION when trying to expand is
    // strictly speaking an oxymoron, but we define this to mean always taking
    // the maximum step size so that the Armijo & Wolfe implementations are
    // agnostic to the interpolation type.
    return max_step_size;
  }
  // Only check if lower-bound is valid here, where it is required
  // to avoid replicating current.value_is_valid == false
  // behaviour in WolfeLineSearch.
  CHECK(lowerbound.value_is_valid)
      << "Ceres bug: lower-bound sample for interpolation is invalid, "
      << "please contact the developers!, interpolation_type: "
      << LineSearchInterpolationTypeToString(interpolation_type)
      << ", lowerbound: " << lowerbound << ", previous: " << previous
      << ", current: " << current;

  // Select step size by interpolating the function and gradient values
  // and minimizing the corresponding polynomial.
  vector<FunctionSample> samples;
  samples.push_back(lowerbound);

  if (interpolation_type == QUADRATIC) {
    // Two point interpolation using function values and the
    // gradient at the lower bound.
    samples.push_back(ValueSample(current.x, current.value));

    if (previous.value_is_valid) {
      // Three point interpolation, using function values and the
      // gradient at the lower bound.
      samples.push_back(ValueSample(previous.x, previous.value));
    }
  } else if (interpolation_type == CUBIC) {
    // Two point interpolation using the function values and the gradients.
    samples.push_back(current);

    if (previous.value_is_valid) {
      // Three point interpolation using the function values and
      // the gradients.
      samples.push_back(previous);
    }
  } else {
    LOG(FATAL) << "Ceres bug: No handler for interpolation_type: "
               << LineSearchInterpolationTypeToString(interpolation_type)
               << ", please contact the developers!";
  }

  double step_size = 0.0, unused_min_value = 0.0;
  MinimizeInterpolatingPolynomial(samples, min_step_size, max_step_size,
                                  &step_size, &unused_min_value);
  return step_size;
}

ArmijoLineSearch::ArmijoLineSearch(const LineSearch::Options& options)
    : LineSearch(options) {}

void ArmijoLineSearch::Search(const double step_size_estimate,
                              const double initial_cost,
                              const double initial_gradient,
                              Summary* summary) {
  *CHECK_NOTNULL(summary) = LineSearch::Summary();
  CHECK_GE(step_size_estimate, 0.0);
  CHECK_GT(options().sufficient_decrease, 0.0);
  CHECK_LT(options().sufficient_decrease, 1.0);
  CHECK_GT(options().max_num_iterations, 0);
  Function* function = options().function;

  // Note initial_cost & initial_gradient are evaluated at step_size = 0,
  // not step_size_estimate, which is our starting guess.
  const FunctionSample initial_position =
      ValueAndGradientSample(0.0, initial_cost, initial_gradient);

  FunctionSample previous = ValueAndGradientSample(0.0, 0.0, 0.0);
  previous.value_is_valid = false;

  FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
  current.value_is_valid = false;

  const bool interpolation_uses_gradients =
      options().interpolation_type == CUBIC;
  const double descent_direction_max_norm =
      static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();

  ++summary->num_function_evaluations;
  if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; }
  current.value_is_valid =
      function->Evaluate(current.x,
                         &current.value,
                         interpolation_uses_gradients
                         ? &current.gradient : NULL);
  current.gradient_is_valid =
      interpolation_uses_gradients && current.value_is_valid;
  while (!current.value_is_valid ||
         current.value > (initial_cost
                          + options().sufficient_decrease
                          * initial_gradient
                          * current.x)) {
    // If current.value_is_valid is false, we treat it as if the cost at that
    // point is not large enough to satisfy the sufficient decrease condition.
    ++summary->num_iterations;
    if (summary->num_iterations >= options().max_num_iterations) {
      summary->error =
          StringPrintf("Line search failed: Armijo failed to find a point "
                       "satisfying the sufficient decrease condition within "
                       "specified max_num_iterations: %d.",
                       options().max_num_iterations);
      LOG(WARNING) << summary->error;
      return;
    }

    const double step_size =
        this->InterpolatingPolynomialMinimizingStepSize(
            options().interpolation_type,
            initial_position,
            previous,
            current,
            (options().max_step_contraction * current.x),
            (options().min_step_contraction * current.x));

    if (step_size * descent_direction_max_norm < options().min_step_size) {
      summary->error =
          StringPrintf("Line search failed: step_size too small: %.5e "
                       "with descent_direction_max_norm: %.5e.", step_size,
                       descent_direction_max_norm);
      LOG(WARNING) << summary->error;
      return;
    }

    previous = current;
    current.x = step_size;

    ++summary->num_function_evaluations;
    if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; }
    current.value_is_valid =
      function->Evaluate(current.x,
                         &current.value,
                         interpolation_uses_gradients
                         ? &current.gradient : NULL);
    current.gradient_is_valid =
        interpolation_uses_gradients && current.value_is_valid;
  }

  summary->optimal_step_size = current.x;
  summary->success = true;
}

WolfeLineSearch::WolfeLineSearch(const LineSearch::Options& options)
    : LineSearch(options) {}

void WolfeLineSearch::Search(const double step_size_estimate,
                             const double initial_cost,
                             const double initial_gradient,
                             Summary* summary) {
  *CHECK_NOTNULL(summary) = LineSearch::Summary();
  // All parameters should have been validated by the Solver, but as
  // invalid values would produce crazy nonsense, hard check them here.
  CHECK_GE(step_size_estimate, 0.0);
  CHECK_GT(options().sufficient_decrease, 0.0);
  CHECK_GT(options().sufficient_curvature_decrease,
           options().sufficient_decrease);
  CHECK_LT(options().sufficient_curvature_decrease, 1.0);
  CHECK_GT(options().max_step_expansion, 1.0);

  // Note initial_cost & initial_gradient are evaluated at step_size = 0,
  // not step_size_estimate, which is our starting guess.
  const FunctionSample initial_position =
      ValueAndGradientSample(0.0, initial_cost, initial_gradient);

  bool do_zoom_search = false;
  // Important: The high/low in bracket_high & bracket_low refer to their
  // _function_ values, not their step sizes i.e. it is _not_ required that
  // bracket_low.x < bracket_high.x.
  FunctionSample solution, bracket_low, bracket_high;

  // Wolfe bracketing phase: Increases step_size until either it finds a point
  // that satisfies the (strong) Wolfe conditions, or an interval that brackets
  // step sizes which satisfy the conditions.  From Nocedal & Wright [1] p61 the
  // interval: (step_size_{k-1}, step_size_{k}) contains step lengths satisfying
  // the strong Wolfe conditions if one of the following conditions are met:
  //
  //   1. step_size_{k} violates the sufficient decrease (Armijo) condition.
  //   2. f(step_size_{k}) >= f(step_size_{k-1}).
  //   3. f'(step_size_{k}) >= 0.
  //
  // Caveat: If f(step_size_{k}) is invalid, then step_size is reduced, ignoring
  // this special case, step_size monotonically increases during bracketing.
  if (!this->BracketingPhase(initial_position,
                             step_size_estimate,
                             &bracket_low,
                             &bracket_high,
                             &do_zoom_search,
                             summary) &&
      summary->num_iterations < options().max_num_iterations) {
    // Failed to find either a valid point or a valid bracket, but we did not
    // run out of iterations.
    return;
  }
  if (!do_zoom_search) {
    // Either: Bracketing phase already found a point satisfying the strong
    // Wolfe conditions, thus no Zoom required.
    //
    // Or: Bracketing failed to find a valid bracket or a point satisfying the
    // strong Wolfe conditions within max_num_iterations.  As this is an
    // 'artificial' constraint, and we would otherwise fail to produce a valid
    // point when ArmijoLineSearch would succeed, we return the lowest point
    // found thus far which satsifies the Armijo condition (but not the Wolfe
    // conditions).
    CHECK(bracket_low.value_is_valid)
        << "Ceres bug: Bracketing produced an invalid bracket_low, please "
        << "contact the developers!, bracket_low: " << bracket_low
        << ", bracket_high: " << bracket_high << ", num_iterations: "
        << summary->num_iterations << ", max_num_iterations: "
        << options().max_num_iterations;
    summary->optimal_step_size = bracket_low.x;
    summary->success = true;
    return;
  }

  // Wolfe Zoom phase: Called when the Bracketing phase finds an interval of
  // non-zero, finite width that should bracket step sizes which satisfy the
  // (strong) Wolfe conditions (before finding a step size that satisfies the
  // conditions).  Zoom successively decreases the size of the interval until a
  // step size which satisfies the Wolfe conditions is found.  The interval is
  // defined by bracket_low & bracket_high, which satisfy:
  //
  //   1. The interval bounded by step sizes: bracket_low.x & bracket_high.x
  //      contains step sizes that satsify the strong Wolfe conditions.
  //   2. bracket_low.x is of all the step sizes evaluated *which satisifed the
  //      Armijo sufficient decrease condition*, the one which generated the
  //      smallest function value, i.e. bracket_low.value <
  //      f(all other steps satisfying Armijo).
  //        - Note that this does _not_ (necessarily) mean that initially
  //          bracket_low.value < bracket_high.value (although this is typical)
  //          e.g. when bracket_low = initial_position, and bracket_high is the
  //          first sample, and which does not satisfy the Armijo condition,
  //          but still has bracket_high.value < initial_position.value.
  //   3. bracket_high is chosen after bracket_low, s.t.
  //      bracket_low.gradient * (bracket_high.x - bracket_low.x) < 0.
  if (!this->ZoomPhase(initial_position,
                       bracket_low,
                       bracket_high,
                       &solution,
                       summary) && !solution.value_is_valid) {
    // Failed to find a valid point (given the specified decrease parameters)
    // within the specified bracket.
    return;
  }
  // Ensure that if we ran out of iterations whilst zooming the bracket, or
  // shrank the bracket width to < tolerance and failed to find a point which
  // satisfies the strong Wolfe curvature condition, that we return the point
  // amongst those found thus far, which minimizes f() and satisfies the Armijo
  // condition.
  solution =
      solution.value_is_valid && solution.value <= bracket_low.value
      ? solution : bracket_low;

  summary->optimal_step_size = solution.x;
  summary->success = true;
}

// Returns true iff bracket_low & bracket_high bound a bracket that contains
// points which satisfy the strong Wolfe conditions. Otherwise, on return false,
// if we stopped searching due to the 'artificial' condition of reaching
// max_num_iterations, bracket_low is the step size amongst all those
// tested, which satisfied the Armijo decrease condition and minimized f().
bool WolfeLineSearch::BracketingPhase(
    const FunctionSample& initial_position,
    const double step_size_estimate,
    FunctionSample* bracket_low,
    FunctionSample* bracket_high,
    bool* do_zoom_search,
    Summary* summary) {
  Function* function = options().function;

  FunctionSample previous = initial_position;
  FunctionSample current = ValueAndGradientSample(step_size_estimate, 0.0, 0.0);
  current.value_is_valid = false;

  const bool interpolation_uses_gradients =
      options().interpolation_type == CUBIC;
  const double descent_direction_max_norm =
      static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();

  *do_zoom_search = false;
  *bracket_low = initial_position;

  ++summary->num_function_evaluations;
  if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; }
  current.value_is_valid =
      function->Evaluate(current.x,
                         &current.value,
                         interpolation_uses_gradients
                         ? &current.gradient : NULL);
  current.gradient_is_valid =
      interpolation_uses_gradients && current.value_is_valid;

  while (true) {
    ++summary->num_iterations;

    if (current.value_is_valid &&
        (current.value > (initial_position.value
                          + options().sufficient_decrease
                          * initial_position.gradient
                          * current.x) ||
         (previous.value_is_valid && current.value > previous.value))) {
      // Bracket found: current step size violates Armijo sufficient decrease
      // condition, or has stepped past an inflection point of f() relative to
      // previous step size.
      *do_zoom_search = true;
      *bracket_low = previous;
      *bracket_high = current;
      break;
    }

    // Irrespective of the interpolation type we are using, we now need the
    // gradient at the current point (which satisfies the Armijo condition)
    // in order to check the strong Wolfe conditions.
    if (!interpolation_uses_gradients) {
      ++summary->num_function_evaluations;
      ++summary->num_gradient_evaluations;
      current.value_is_valid =
          function->Evaluate(current.x,
                             &current.value,
                             &current.gradient);
      current.gradient_is_valid = current.value_is_valid;
    }

    if (current.value_is_valid &&
        fabs(current.gradient) <=
        -options().sufficient_curvature_decrease * initial_position.gradient) {
      // Current step size satisfies the strong Wolfe conditions, and is thus a
      // valid termination point, therefore a Zoom not required.
      *bracket_low = current;
      *bracket_high = current;
      break;

    } else if (current.value_is_valid && current.gradient >= 0) {
      // Bracket found: current step size has stepped past an inflection point
      // of f(), but Armijo sufficient decrease is still satisfied and
      // f(current) is our best minimum thus far.  Remember step size
      // monotonically increases, thus previous_step_size < current_step_size
      // even though f(previous) > f(current).
      *do_zoom_search = true;
      // Note inverse ordering from first bracket case.
      *bracket_low = current;
      *bracket_high = previous;
      break;

    } else if (summary->num_iterations >= options().max_num_iterations) {
      // Check num iterations bound here so that we always evaluate the
      // max_num_iterations-th iteration against all conditions, and
      // then perform no additional (unused) evaluations.
      summary->error =
          StringPrintf("Line search failed: Wolfe bracketing phase failed to "
                       "find a point satisfying strong Wolfe conditions, or a "
                       "bracket containing such a point within specified "
                       "max_num_iterations: %d", options().max_num_iterations);
      LOG(WARNING) << summary->error;
      // Ensure that bracket_low is always set to the step size amongst all
      // those tested which minimizes f() and satisfies the Armijo condition
      // when we terminate due to the 'artificial' max_num_iterations condition.
      *bracket_low =
          current.value_is_valid && current.value < bracket_low->value
          ? current : *bracket_low;
      return false;
    }
    // Either: f(current) is invalid; or, f(current) is valid, but does not
    // satisfy the strong Wolfe conditions itself, or the conditions for
    // being a boundary of a bracket.

    // If f(current) is valid, (but meets no criteria) expand the search by
    // increasing the step size.
    const double max_step_size =
        current.value_is_valid
        ? (current.x * options().max_step_expansion) : current.x;

    // We are performing 2-point interpolation only here, but the API of
    // InterpolatingPolynomialMinimizingStepSize() allows for up to
    // 3-point interpolation, so pad call with a sample with an invalid
    // value that will therefore be ignored.
    const FunctionSample unused_previous;
    DCHECK(!unused_previous.value_is_valid);
    // Contracts step size if f(current) is not valid.
    const double step_size =
        this->InterpolatingPolynomialMinimizingStepSize(
            options().interpolation_type,
            previous,
            unused_previous,
            current,
            previous.x,
            max_step_size);
    if (step_size * descent_direction_max_norm < options().min_step_size) {
      summary->error =
          StringPrintf("Line search failed: step_size too small: %.5e "
                       "with descent_direction_max_norm: %.5e", step_size,
                       descent_direction_max_norm);
      LOG(WARNING) << summary->error;
      return false;
    }

    previous = current.value_is_valid ? current : previous;
    current.x = step_size;

    ++summary->num_function_evaluations;
    if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; }
    current.value_is_valid =
        function->Evaluate(current.x,
                           &current.value,
                           interpolation_uses_gradients
                           ? &current.gradient : NULL);
    current.gradient_is_valid =
        interpolation_uses_gradients && current.value_is_valid;
  }
  // Either we have a valid point, defined as a bracket of zero width, in which
  // case no zoom is required, or a valid bracket in which to zoom.
  return true;
}

// Returns true iff solution satisfies the strong Wolfe conditions. Otherwise,
// on return false, if we stopped searching due to the 'artificial' condition of
// reaching max_num_iterations, solution is the step size amongst all those
// tested, which satisfied the Armijo decrease condition and minimized f().
bool WolfeLineSearch::ZoomPhase(const FunctionSample& initial_position,
                                FunctionSample bracket_low,
                                FunctionSample bracket_high,
                                FunctionSample* solution,
                                Summary* summary) {
  Function* function = options().function;

  CHECK(bracket_low.value_is_valid && bracket_low.gradient_is_valid)
      << "Ceres bug: f_low input to Wolfe Zoom invalid, please contact "
      << "the developers!, initial_position: " << initial_position
      << ", bracket_low: " << bracket_low
      << ", bracket_high: "<< bracket_high;
  // We do not require bracket_high.gradient_is_valid as the gradient condition
  // for a valid bracket is only dependent upon bracket_low.gradient, and
  // in order to minimize jacobian evaluations, bracket_high.gradient may
  // not have been calculated (if bracket_high.value does not satisfy the
  // Armijo sufficient decrease condition and interpolation method does not
  // require it).
  CHECK(bracket_high.value_is_valid)
      << "Ceres bug: f_high input to Wolfe Zoom invalid, please "
      << "contact the developers!, initial_position: " << initial_position
      << ", bracket_low: " << bracket_low
      << ", bracket_high: "<< bracket_high;
  CHECK_LT(bracket_low.gradient *
           (bracket_high.x - bracket_low.x), 0.0)
      << "Ceres bug: f_high input to Wolfe Zoom does not satisfy gradient "
      << "condition combined with f_low, please contact the developers!"
      << ", initial_position: " << initial_position
      << ", bracket_low: " << bracket_low
      << ", bracket_high: "<< bracket_high;

  const int num_bracketing_iterations = summary->num_iterations;
  const bool interpolation_uses_gradients =
      options().interpolation_type == CUBIC;
  const double descent_direction_max_norm =
      static_cast<const LineSearchFunction*>(function)->DirectionInfinityNorm();

  while (true) {
    // Set solution to bracket_low, as it is our best step size (smallest f())
    // found thus far and satisfies the Armijo condition, even though it does
    // not satisfy the Wolfe condition.
    *solution = bracket_low;
    if (summary->num_iterations >= options().max_num_iterations) {
      summary->error =
          StringPrintf("Line search failed: Wolfe zoom phase failed to "
                       "find a point satisfying strong Wolfe conditions "
                       "within specified max_num_iterations: %d, "
                       "(num iterations taken for bracketing: %d).",
                       options().max_num_iterations, num_bracketing_iterations);
      LOG(WARNING) << summary->error;
      return false;
    }
    if (fabs(bracket_high.x - bracket_low.x) * descent_direction_max_norm
        < options().min_step_size) {
      // Bracket width has been reduced below tolerance, and no point satisfying
      // the strong Wolfe conditions has been found.
      summary->error =
          StringPrintf("Line search failed: Wolfe zoom bracket width: %.5e "
                       "too small with descent_direction_max_norm: %.5e.",
                       fabs(bracket_high.x - bracket_low.x),
                       descent_direction_max_norm);
      LOG(WARNING) << summary->error;
      return false;
    }

    ++summary->num_iterations;
    // Polynomial interpolation requires inputs ordered according to step size,
    // not f(step size).
    const FunctionSample& lower_bound_step =
        bracket_low.x < bracket_high.x ? bracket_low : bracket_high;
    const FunctionSample& upper_bound_step =
        bracket_low.x < bracket_high.x ? bracket_high : bracket_low;
    // We are performing 2-point interpolation only here, but the API of
    // InterpolatingPolynomialMinimizingStepSize() allows for up to
    // 3-point interpolation, so pad call with a sample with an invalid
    // value that will therefore be ignored.
    const FunctionSample unused_previous;
    DCHECK(!unused_previous.value_is_valid);
    solution->x =
        this->InterpolatingPolynomialMinimizingStepSize(
            options().interpolation_type,
            lower_bound_step,
            unused_previous,
            upper_bound_step,
            lower_bound_step.x,
            upper_bound_step.x);
    // No check on magnitude of step size being too small here as it is
    // lower-bounded by the initial bracket start point, which was valid.
    ++summary->num_function_evaluations;
    if (interpolation_uses_gradients) { ++summary->num_gradient_evaluations; }
    solution->value_is_valid =
        function->Evaluate(solution->x,
                           &solution->value,
                           interpolation_uses_gradients
                           ? &solution->gradient : NULL);
    solution->gradient_is_valid =
        interpolation_uses_gradients && solution->value_is_valid;
    if (!solution->value_is_valid) {
      summary->error =
          StringPrintf("Line search failed: Wolfe Zoom phase found "
                       "step_size: %.5e, for which function is invalid, "
                       "between low_step: %.5e and high_step: %.5e "
                       "at which function is valid.",
                       solution->x, bracket_low.x, bracket_high.x);
      LOG(WARNING) << summary->error;
      return false;
    }

    if ((solution->value > (initial_position.value
                            + options().sufficient_decrease
                            * initial_position.gradient
                            * solution->x)) ||
        (solution->value >= bracket_low.value)) {
      // Armijo sufficient decrease not satisfied, or not better
      // than current lowest sample, use as new upper bound.
      bracket_high = *solution;
      continue;
    }

    // Armijo sufficient decrease satisfied, check strong Wolfe condition.
    if (!interpolation_uses_gradients) {
      // Irrespective of the interpolation type we are using, we now need the
      // gradient at the current point (which satisfies the Armijo condition)
      // in order to check the strong Wolfe conditions.
      ++summary->num_function_evaluations;
      ++summary->num_gradient_evaluations;
      solution->value_is_valid =
          function->Evaluate(solution->x,
                             &solution->value,
                             &solution->gradient);
      solution->gradient_is_valid = solution->value_is_valid;
      if (!solution->value_is_valid) {
        summary->error =
            StringPrintf("Line search failed: Wolfe Zoom phase found "
                         "step_size: %.5e, for which function is invalid, "
                         "between low_step: %.5e and high_step: %.5e "
                         "at which function is valid.",
                         solution->x, bracket_low.x, bracket_high.x);
        LOG(WARNING) << summary->error;
        return false;
      }
    }
    if (fabs(solution->gradient) <=
        -options().sufficient_curvature_decrease * initial_position.gradient) {
      // Found a valid termination point satisfying strong Wolfe conditions.
      break;

    } else if (solution->gradient * (bracket_high.x - bracket_low.x) >= 0) {
      bracket_high = bracket_low;
    }

    bracket_low = *solution;
  }
  // Solution contains a valid point which satisfies the strong Wolfe
  // conditions.
  return true;
}

}  // namespace internal
}  // namespace ceres

#endif  // CERES_NO_LINE_SEARCH_MINIMIZER