aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/low_rank_inverse_hessian.cc
blob: 372165f9523c70f92ef350dbe9d49253c1a0708a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)

#include "ceres/internal/eigen.h"
#include "ceres/low_rank_inverse_hessian.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {

LowRankInverseHessian::LowRankInverseHessian(
    int num_parameters,
    int max_num_corrections,
    bool use_approximate_eigenvalue_scaling)
    : num_parameters_(num_parameters),
      max_num_corrections_(max_num_corrections),
      use_approximate_eigenvalue_scaling_(use_approximate_eigenvalue_scaling),
      num_corrections_(0),
      approximate_eigenvalue_scale_(1.0),
      delta_x_history_(num_parameters, max_num_corrections),
      delta_gradient_history_(num_parameters, max_num_corrections),
      delta_x_dot_delta_gradient_(max_num_corrections) {
}

bool LowRankInverseHessian::Update(const Vector& delta_x,
                                   const Vector& delta_gradient) {
  const double delta_x_dot_delta_gradient = delta_x.dot(delta_gradient);
  if (delta_x_dot_delta_gradient <= 1e-10) {
    VLOG(2) << "Skipping LBFGS Update, delta_x_dot_delta_gradient too small: "
            << delta_x_dot_delta_gradient;
    return false;
  }

  if (num_corrections_ == max_num_corrections_) {
    // TODO(sameeragarwal): This can be done more efficiently using
    // a circular buffer/indexing scheme, but for simplicity we will
    // do the expensive copy for now.
    delta_x_history_.block(0, 0, num_parameters_, max_num_corrections_ - 1) =
        delta_x_history_
        .block(0, 1, num_parameters_, max_num_corrections_ - 1);

    delta_gradient_history_
        .block(0, 0, num_parameters_, max_num_corrections_ - 1) =
        delta_gradient_history_
        .block(0, 1, num_parameters_, max_num_corrections_ - 1);

    delta_x_dot_delta_gradient_.head(num_corrections_ - 1) =
        delta_x_dot_delta_gradient_.tail(num_corrections_ - 1);
  } else {
    ++num_corrections_;
  }

  delta_x_history_.col(num_corrections_ - 1) = delta_x;
  delta_gradient_history_.col(num_corrections_ - 1) = delta_gradient;
  delta_x_dot_delta_gradient_(num_corrections_ - 1) =
      delta_x_dot_delta_gradient;
  approximate_eigenvalue_scale_ =
      delta_x_dot_delta_gradient / delta_gradient.squaredNorm();
  return true;
}

void LowRankInverseHessian::RightMultiply(const double* x_ptr,
                                          double* y_ptr) const {
  ConstVectorRef gradient(x_ptr, num_parameters_);
  VectorRef search_direction(y_ptr, num_parameters_);

  search_direction = gradient;

  Vector alpha(num_corrections_);

  for (int i = num_corrections_ - 1; i >= 0; --i) {
    alpha(i) = delta_x_history_.col(i).dot(search_direction) /
        delta_x_dot_delta_gradient_(i);
    search_direction -= alpha(i) * delta_gradient_history_.col(i);
  }

  if (use_approximate_eigenvalue_scaling_) {
    // Rescale the initial inverse Hessian approximation (H_0) to be iteratively
    // updated so that it is of similar 'size' to the true inverse Hessian along
    // the most recent search direction.  As shown in [1]:
    //
    //   \gamma_k = (delta_gradient_{k-1}' * delta_x_{k-1}) /
    //              (delta_gradient_{k-1}' * delta_gradient_{k-1})
    //
    // Satisfies:
    //
    //   (1 / \lambda_m) <= \gamma_k <= (1 / \lambda_1)
    //
    // Where \lambda_1 & \lambda_m are the smallest and largest eigenvalues of
    // the true Hessian (not the inverse) along the most recent search direction
    // respectively.  Thus \gamma is an approximate eigenvalue of the true
    // inverse Hessian, and choosing: H_0 = I * \gamma will yield a starting
    // point that has a similar scale to the true inverse Hessian.  This
    // technique is widely reported to often improve convergence, however this
    // is not universally true, particularly if there are errors in the initial
    // jacobians, or if there are significant differences in the sensitivity
    // of the problem to the parameters (i.e. the range of the magnitudes of
    // the components of the gradient is large).
    //
    // The original origin of this rescaling trick is somewhat unclear, the
    // earliest reference appears to be Oren [1], however it is widely discussed
    // without specific attributation in various texts including [2] (p143/178).
    //
    // [1] Oren S.S., Self-scaling variable metric (SSVM) algorithms Part II:
    //     Implementation and experiments, Management Science,
    //     20(5), 863-874, 1974.
    // [2] Nocedal J., Wright S., Numerical Optimization, Springer, 1999.
    search_direction *= approximate_eigenvalue_scale_;
  }

  for (int i = 0; i < num_corrections_; ++i) {
    const double beta = delta_gradient_history_.col(i).dot(search_direction) /
        delta_x_dot_delta_gradient_(i);
    search_direction += delta_x_history_.col(i) * (alpha(i) - beta);
  }
}

}  // namespace internal
}  // namespace ceres