aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/problem_impl.cc
blob: 830270269c3b1f6fba9aa196eec6fd5750d13a93 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//         keir@google.com (Keir Mierle)

#include "ceres/problem_impl.h"

#include <algorithm>
#include <cstddef>
#include <iterator>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "ceres/casts.h"
#include "ceres/compressed_row_sparse_matrix.h"
#include "ceres/cost_function.h"
#include "ceres/crs_matrix.h"
#include "ceres/evaluator.h"
#include "ceres/loss_function.h"
#include "ceres/map_util.h"
#include "ceres/parameter_block.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/stl_util.h"
#include "ceres/stringprintf.h"
#include "glog/logging.h"

namespace ceres {
namespace internal {

typedef map<double*, internal::ParameterBlock*> ParameterMap;

namespace {
internal::ParameterBlock* FindParameterBlockOrDie(
    const ParameterMap& parameter_map,
    double* parameter_block) {
  ParameterMap::const_iterator it = parameter_map.find(parameter_block);
  CHECK(it != parameter_map.end())
      << "Parameter block not found: " << parameter_block;
  return it->second;
}

// Returns true if two regions of memory, a and b, with sizes size_a and size_b
// respectively, overlap.
bool RegionsAlias(const double* a, int size_a,
                  const double* b, int size_b) {
  return (a < b) ? b < (a + size_a)
                 : a < (b + size_b);
}

void CheckForNoAliasing(double* existing_block,
                        int existing_block_size,
                        double* new_block,
                        int new_block_size) {
  CHECK(!RegionsAlias(existing_block, existing_block_size,
                      new_block, new_block_size))
      << "Aliasing detected between existing parameter block at memory "
      << "location " << existing_block
      << " and has size " << existing_block_size << " with new parameter "
      << "block that has memory address " << new_block << " and would have "
      << "size " << new_block_size << ".";
}

}  // namespace

ParameterBlock* ProblemImpl::InternalAddParameterBlock(double* values,
                                                       int size) {
  CHECK(values != NULL) << "Null pointer passed to AddParameterBlock "
                        << "for a parameter with size " << size;

  // Ignore the request if there is a block for the given pointer already.
  ParameterMap::iterator it = parameter_block_map_.find(values);
  if (it != parameter_block_map_.end()) {
    if (!options_.disable_all_safety_checks) {
      int existing_size = it->second->Size();
      CHECK(size == existing_size)
          << "Tried adding a parameter block with the same double pointer, "
          << values << ", twice, but with different block sizes. Original "
          << "size was " << existing_size << " but new size is "
          << size;
    }
    return it->second;
  }

  if (!options_.disable_all_safety_checks) {
    // Before adding the parameter block, also check that it doesn't alias any
    // other parameter blocks.
    if (!parameter_block_map_.empty()) {
      ParameterMap::iterator lb = parameter_block_map_.lower_bound(values);

      // If lb is not the first block, check the previous block for aliasing.
      if (lb != parameter_block_map_.begin()) {
        ParameterMap::iterator previous = lb;
        --previous;
        CheckForNoAliasing(previous->first,
                           previous->second->Size(),
                           values,
                           size);
      }

      // If lb is not off the end, check lb for aliasing.
      if (lb != parameter_block_map_.end()) {
        CheckForNoAliasing(lb->first,
                           lb->second->Size(),
                           values,
                           size);
      }
    }
  }

  // Pass the index of the new parameter block as well to keep the index in
  // sync with the position of the parameter in the program's parameter vector.
  ParameterBlock* new_parameter_block =
      new ParameterBlock(values, size, program_->parameter_blocks_.size());

  // For dynamic problems, add the list of dependent residual blocks, which is
  // empty to start.
  if (options_.enable_fast_parameter_block_removal) {
    new_parameter_block->EnableResidualBlockDependencies();
  }
  parameter_block_map_[values] = new_parameter_block;
  program_->parameter_blocks_.push_back(new_parameter_block);
  return new_parameter_block;
}

// Deletes the residual block in question, assuming there are no other
// references to it inside the problem (e.g. by another parameter). Referenced
// cost and loss functions are tucked away for future deletion, since it is not
// possible to know whether other parts of the problem depend on them without
// doing a full scan.
void ProblemImpl::DeleteBlock(ResidualBlock* residual_block) {
  // The const casts here are legit, since ResidualBlock holds these
  // pointers as const pointers but we have ownership of them and
  // have the right to destroy them when the destructor is called.
  if (options_.cost_function_ownership == TAKE_OWNERSHIP &&
      residual_block->cost_function() != NULL) {
    cost_functions_to_delete_.push_back(
        const_cast<CostFunction*>(residual_block->cost_function()));
  }
  if (options_.loss_function_ownership == TAKE_OWNERSHIP &&
      residual_block->loss_function() != NULL) {
    loss_functions_to_delete_.push_back(
        const_cast<LossFunction*>(residual_block->loss_function()));
  }
  delete residual_block;
}

// Deletes the parameter block in question, assuming there are no other
// references to it inside the problem (e.g. by any residual blocks).
// Referenced parameterizations are tucked away for future deletion, since it
// is not possible to know whether other parts of the problem depend on them
// without doing a full scan.
void ProblemImpl::DeleteBlock(ParameterBlock* parameter_block) {
  if (options_.local_parameterization_ownership == TAKE_OWNERSHIP &&
      parameter_block->local_parameterization() != NULL) {
    local_parameterizations_to_delete_.push_back(
        parameter_block->mutable_local_parameterization());
  }
  parameter_block_map_.erase(parameter_block->mutable_user_state());
  delete parameter_block;
}

ProblemImpl::ProblemImpl() : program_(new internal::Program) {}
ProblemImpl::ProblemImpl(const Problem::Options& options)
    : options_(options),
      program_(new internal::Program) {}

ProblemImpl::~ProblemImpl() {
  // Collect the unique cost/loss functions and delete the residuals.
  const int num_residual_blocks = program_->residual_blocks_.size();
  cost_functions_to_delete_.reserve(num_residual_blocks);
  loss_functions_to_delete_.reserve(num_residual_blocks);
  for (int i = 0; i < program_->residual_blocks_.size(); ++i) {
    DeleteBlock(program_->residual_blocks_[i]);
  }

  // Collect the unique parameterizations and delete the parameters.
  for (int i = 0; i < program_->parameter_blocks_.size(); ++i) {
    DeleteBlock(program_->parameter_blocks_[i]);
  }

  // Delete the owned cost/loss functions and parameterizations.
  STLDeleteUniqueContainerPointers(local_parameterizations_to_delete_.begin(),
                                   local_parameterizations_to_delete_.end());
  STLDeleteUniqueContainerPointers(cost_functions_to_delete_.begin(),
                                   cost_functions_to_delete_.end());
  STLDeleteUniqueContainerPointers(loss_functions_to_delete_.begin(),
                                   loss_functions_to_delete_.end());
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    const vector<double*>& parameter_blocks) {
  CHECK_NOTNULL(cost_function);
  CHECK_EQ(parameter_blocks.size(),
           cost_function->parameter_block_sizes().size());

  // Check the sizes match.
  const vector<int16>& parameter_block_sizes =
      cost_function->parameter_block_sizes();

  if (!options_.disable_all_safety_checks) {
    CHECK_EQ(parameter_block_sizes.size(), parameter_blocks.size())
        << "Number of blocks input is different than the number of blocks "
        << "that the cost function expects.";

    // Check for duplicate parameter blocks.
    vector<double*> sorted_parameter_blocks(parameter_blocks);
    sort(sorted_parameter_blocks.begin(), sorted_parameter_blocks.end());
    vector<double*>::const_iterator duplicate_items =
        unique(sorted_parameter_blocks.begin(),
               sorted_parameter_blocks.end());
    if (duplicate_items != sorted_parameter_blocks.end()) {
      string blocks;
      for (int i = 0; i < parameter_blocks.size(); ++i) {
        blocks += StringPrintf(" %p ", parameter_blocks[i]);
      }

      LOG(FATAL) << "Duplicate parameter blocks in a residual parameter "
                 << "are not allowed. Parameter block pointers: ["
                 << blocks << "]";
    }
  }

  // Add parameter blocks and convert the double*'s to parameter blocks.
  vector<ParameterBlock*> parameter_block_ptrs(parameter_blocks.size());
  for (int i = 0; i < parameter_blocks.size(); ++i) {
    parameter_block_ptrs[i] =
        InternalAddParameterBlock(parameter_blocks[i],
                                  parameter_block_sizes[i]);
  }

  if (!options_.disable_all_safety_checks) {
    // Check that the block sizes match the block sizes expected by the
    // cost_function.
    for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
      CHECK_EQ(cost_function->parameter_block_sizes()[i],
               parameter_block_ptrs[i]->Size())
          << "The cost function expects parameter block " << i
          << " of size " << cost_function->parameter_block_sizes()[i]
          << " but was given a block of size "
          << parameter_block_ptrs[i]->Size();
    }
  }

  ResidualBlock* new_residual_block =
      new ResidualBlock(cost_function,
                        loss_function,
                        parameter_block_ptrs,
                        program_->residual_blocks_.size());

  // Add dependencies on the residual to the parameter blocks.
  if (options_.enable_fast_parameter_block_removal) {
    for (int i = 0; i < parameter_blocks.size(); ++i) {
      parameter_block_ptrs[i]->AddResidualBlock(new_residual_block);
    }
  }

  program_->residual_blocks_.push_back(new_residual_block);
  return new_residual_block;
}

// Unfortunately, macros don't help much to reduce this code, and var args don't
// work because of the ambiguous case that there is no loss function.
ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3, double* x4) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  residual_parameters.push_back(x4);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3, double* x4, double* x5) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  residual_parameters.push_back(x4);
  residual_parameters.push_back(x5);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
    double* x6) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  residual_parameters.push_back(x4);
  residual_parameters.push_back(x5);
  residual_parameters.push_back(x6);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
    double* x6, double* x7) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  residual_parameters.push_back(x4);
  residual_parameters.push_back(x5);
  residual_parameters.push_back(x6);
  residual_parameters.push_back(x7);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
    double* x6, double* x7, double* x8) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  residual_parameters.push_back(x4);
  residual_parameters.push_back(x5);
  residual_parameters.push_back(x6);
  residual_parameters.push_back(x7);
  residual_parameters.push_back(x8);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

ResidualBlock* ProblemImpl::AddResidualBlock(
    CostFunction* cost_function,
    LossFunction* loss_function,
    double* x0, double* x1, double* x2, double* x3, double* x4, double* x5,
    double* x6, double* x7, double* x8, double* x9) {
  vector<double*> residual_parameters;
  residual_parameters.push_back(x0);
  residual_parameters.push_back(x1);
  residual_parameters.push_back(x2);
  residual_parameters.push_back(x3);
  residual_parameters.push_back(x4);
  residual_parameters.push_back(x5);
  residual_parameters.push_back(x6);
  residual_parameters.push_back(x7);
  residual_parameters.push_back(x8);
  residual_parameters.push_back(x9);
  return AddResidualBlock(cost_function, loss_function, residual_parameters);
}

void ProblemImpl::AddParameterBlock(double* values, int size) {
  InternalAddParameterBlock(values, size);
}

void ProblemImpl::AddParameterBlock(
    double* values,
    int size,
    LocalParameterization* local_parameterization) {
  ParameterBlock* parameter_block =
      InternalAddParameterBlock(values, size);
  if (local_parameterization != NULL) {
    parameter_block->SetParameterization(local_parameterization);
  }
}

// Delete a block from a vector of blocks, maintaining the indexing invariant.
// This is done in constant time by moving an element from the end of the
// vector over the element to remove, then popping the last element. It
// destroys the ordering in the interest of speed.
template<typename Block>
void ProblemImpl::DeleteBlockInVector(vector<Block*>* mutable_blocks,
                                      Block* block_to_remove) {
  CHECK_EQ((*mutable_blocks)[block_to_remove->index()], block_to_remove)
      << "You found a Ceres bug! Block: " << block_to_remove->ToString();

  // Prepare the to-be-moved block for the new, lower-in-index position by
  // setting the index to the blocks final location.
  Block* tmp = mutable_blocks->back();
  tmp->set_index(block_to_remove->index());

  // Overwrite the to-be-deleted residual block with the one at the end.
  (*mutable_blocks)[block_to_remove->index()] = tmp;

  DeleteBlock(block_to_remove);

  // The block is gone so shrink the vector of blocks accordingly.
  mutable_blocks->pop_back();
}

void ProblemImpl::RemoveResidualBlock(ResidualBlock* residual_block) {
  CHECK_NOTNULL(residual_block);

  // If needed, remove the parameter dependencies on this residual block.
  if (options_.enable_fast_parameter_block_removal) {
    const int num_parameter_blocks_for_residual =
        residual_block->NumParameterBlocks();
    for (int i = 0; i < num_parameter_blocks_for_residual; ++i) {
      residual_block->parameter_blocks()[i]
          ->RemoveResidualBlock(residual_block);
    }
  }
  DeleteBlockInVector(program_->mutable_residual_blocks(), residual_block);
}

void ProblemImpl::RemoveParameterBlock(double* values) {
  ParameterBlock* parameter_block =
      FindParameterBlockOrDie(parameter_block_map_, values);

  if (options_.enable_fast_parameter_block_removal) {
    // Copy the dependent residuals from the parameter block because the set of
    // dependents will change after each call to RemoveResidualBlock().
    vector<ResidualBlock*> residual_blocks_to_remove(
        parameter_block->mutable_residual_blocks()->begin(),
        parameter_block->mutable_residual_blocks()->end());
    for (int i = 0; i < residual_blocks_to_remove.size(); ++i) {
      RemoveResidualBlock(residual_blocks_to_remove[i]);
    }
  } else {
    // Scan all the residual blocks to remove ones that depend on the parameter
    // block. Do the scan backwards since the vector changes while iterating.
    const int num_residual_blocks = NumResidualBlocks();
    for (int i = num_residual_blocks - 1; i >= 0; --i) {
      ResidualBlock* residual_block =
          (*(program_->mutable_residual_blocks()))[i];
      const int num_parameter_blocks = residual_block->NumParameterBlocks();
      for (int j = 0; j < num_parameter_blocks; ++j) {
        if (residual_block->parameter_blocks()[j] == parameter_block) {
          RemoveResidualBlock(residual_block);
          // The parameter blocks are guaranteed unique.
          break;
        }
      }
    }
  }
  DeleteBlockInVector(program_->mutable_parameter_blocks(), parameter_block);
}

void ProblemImpl::SetParameterBlockConstant(double* values) {
  FindParameterBlockOrDie(parameter_block_map_, values)->SetConstant();
}

void ProblemImpl::SetParameterBlockVariable(double* values) {
  FindParameterBlockOrDie(parameter_block_map_, values)->SetVarying();
}

void ProblemImpl::SetParameterization(
    double* values,
    LocalParameterization* local_parameterization) {
  FindParameterBlockOrDie(parameter_block_map_, values)
      ->SetParameterization(local_parameterization);
}

bool ProblemImpl::Evaluate(const Problem::EvaluateOptions& evaluate_options,
                           double* cost,
                           vector<double>* residuals,
                           vector<double>* gradient,
                           CRSMatrix* jacobian) {
  if (cost == NULL &&
      residuals == NULL &&
      gradient == NULL &&
      jacobian == NULL) {
    LOG(INFO) << "Nothing to do.";
    return true;
  }

  // If the user supplied residual blocks, then use them, otherwise
  // take the residual blocks from the underlying program.
  Program program;
  *program.mutable_residual_blocks() =
      ((evaluate_options.residual_blocks.size() > 0)
       ? evaluate_options.residual_blocks : program_->residual_blocks());

  const vector<double*>& parameter_block_ptrs =
      evaluate_options.parameter_blocks;

  vector<ParameterBlock*> variable_parameter_blocks;
  vector<ParameterBlock*>& parameter_blocks =
      *program.mutable_parameter_blocks();

  if (parameter_block_ptrs.size() == 0) {
    // The user did not provide any parameter blocks, so default to
    // using all the parameter blocks in the order that they are in
    // the underlying program object.
    parameter_blocks = program_->parameter_blocks();
  } else {
    // The user supplied a vector of parameter blocks. Using this list
    // requires a number of steps.

    // 1. Convert double* into ParameterBlock*
    parameter_blocks.resize(parameter_block_ptrs.size());
    for (int i = 0; i < parameter_block_ptrs.size(); ++i) {
      parameter_blocks[i] =
          FindParameterBlockOrDie(parameter_block_map_,
                                  parameter_block_ptrs[i]);
    }

    // 2. The user may have only supplied a subset of parameter
    // blocks, so identify the ones that are not supplied by the user
    // and are NOT constant. These parameter blocks are stored in
    // variable_parameter_blocks.
    //
    // To ensure that the parameter blocks are not included in the
    // columns of the jacobian, we need to make sure that they are
    // constant during evaluation and then make them variable again
    // after we are done.
    vector<ParameterBlock*> all_parameter_blocks(program_->parameter_blocks());
    vector<ParameterBlock*> included_parameter_blocks(
        program.parameter_blocks());

    vector<ParameterBlock*> excluded_parameter_blocks;
    sort(all_parameter_blocks.begin(), all_parameter_blocks.end());
    sort(included_parameter_blocks.begin(), included_parameter_blocks.end());
    set_difference(all_parameter_blocks.begin(),
                   all_parameter_blocks.end(),
                   included_parameter_blocks.begin(),
                   included_parameter_blocks.end(),
                   back_inserter(excluded_parameter_blocks));

    variable_parameter_blocks.reserve(excluded_parameter_blocks.size());
    for (int i = 0; i < excluded_parameter_blocks.size(); ++i) {
      ParameterBlock* parameter_block = excluded_parameter_blocks[i];
      if (!parameter_block->IsConstant()) {
        variable_parameter_blocks.push_back(parameter_block);
        parameter_block->SetConstant();
      }
    }
  }

  // Setup the Parameter indices and offsets before an evaluator can
  // be constructed and used.
  program.SetParameterOffsetsAndIndex();

  Evaluator::Options evaluator_options;

  // Even though using SPARSE_NORMAL_CHOLESKY requires SuiteSparse or
  // CXSparse, here it just being used for telling the evaluator to
  // use a SparseRowCompressedMatrix for the jacobian. This is because
  // the Evaluator decides the storage for the Jacobian based on the
  // type of linear solver being used.
  evaluator_options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
  evaluator_options.num_threads = evaluate_options.num_threads;

  string error;
  scoped_ptr<Evaluator> evaluator(
      Evaluator::Create(evaluator_options, &program, &error));
  if (evaluator.get() == NULL) {
    LOG(ERROR) << "Unable to create an Evaluator object. "
               << "Error: " << error
               << "This is a Ceres bug; please contact the developers!";

    // Make the parameter blocks that were temporarily marked
    // constant, variable again.
    for (int i = 0; i < variable_parameter_blocks.size(); ++i) {
      variable_parameter_blocks[i]->SetVarying();
    }
    return false;
  }

  if (residuals !=NULL) {
    residuals->resize(evaluator->NumResiduals());
  }

  if (gradient != NULL) {
    gradient->resize(evaluator->NumEffectiveParameters());
  }

  scoped_ptr<CompressedRowSparseMatrix> tmp_jacobian;
  if (jacobian != NULL) {
    tmp_jacobian.reset(
        down_cast<CompressedRowSparseMatrix*>(evaluator->CreateJacobian()));
  }

  // Point the state pointers to the user state pointers. This is
  // needed so that we can extract a parameter vector which is then
  // passed to Evaluator::Evaluate.
  program.SetParameterBlockStatePtrsToUserStatePtrs();

  // Copy the value of the parameter blocks into a vector, since the
  // Evaluate::Evaluate method needs its input as such. The previous
  // call to SetParameterBlockStatePtrsToUserStatePtrs ensures that
  // these values are the ones corresponding to the actual state of
  // the parameter blocks, rather than the temporary state pointer
  // used for evaluation.
  Vector parameters(program.NumParameters());
  program.ParameterBlocksToStateVector(parameters.data());

  double tmp_cost = 0;

  Evaluator::EvaluateOptions evaluator_evaluate_options;
  evaluator_evaluate_options.apply_loss_function =
      evaluate_options.apply_loss_function;
  bool status = evaluator->Evaluate(evaluator_evaluate_options,
                                    parameters.data(),
                                    &tmp_cost,
                                    residuals != NULL ? &(*residuals)[0] : NULL,
                                    gradient != NULL ? &(*gradient)[0] : NULL,
                                    tmp_jacobian.get());

  // Make the parameter blocks that were temporarily marked constant,
  // variable again.
  for (int i = 0; i < variable_parameter_blocks.size(); ++i) {
    variable_parameter_blocks[i]->SetVarying();
  }

  if (status) {
    if (cost != NULL) {
      *cost = tmp_cost;
    }
    if (jacobian != NULL) {
      tmp_jacobian->ToCRSMatrix(jacobian);
    }
  }

  return status;
}

int ProblemImpl::NumParameterBlocks() const {
  return program_->NumParameterBlocks();
}

int ProblemImpl::NumParameters() const {
  return program_->NumParameters();
}

int ProblemImpl::NumResidualBlocks() const {
  return program_->NumResidualBlocks();
}

int ProblemImpl::NumResiduals() const {
  return program_->NumResiduals();
}

int ProblemImpl::ParameterBlockSize(const double* parameter_block) const {
  return FindParameterBlockOrDie(parameter_block_map_,
                                 const_cast<double*>(parameter_block))->Size();
};

int ProblemImpl::ParameterBlockLocalSize(const double* parameter_block) const {
  return FindParameterBlockOrDie(
      parameter_block_map_, const_cast<double*>(parameter_block))->LocalSize();
};

void ProblemImpl::GetParameterBlocks(vector<double*>* parameter_blocks) const {
  CHECK_NOTNULL(parameter_blocks);
  parameter_blocks->resize(0);
  for (ParameterMap::const_iterator it = parameter_block_map_.begin();
       it != parameter_block_map_.end();
       ++it) {
    parameter_blocks->push_back(it->first);
  }
}


}  // namespace internal
}  // namespace ceres