aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl.cc
blob: 64e0f8e40dbfc1c4f8581ef17ddcceb5da996eb5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)

#include "ceres/solver_impl.h"

#include <cstdio>
#include <iostream>  // NOLINT
#include <numeric>
#include "ceres/coordinate_descent_minimizer.h"
#include "ceres/evaluator.h"
#include "ceres/gradient_checking_cost_function.h"
#include "ceres/iteration_callback.h"
#include "ceres/levenberg_marquardt_strategy.h"
#include "ceres/linear_solver.h"
#include "ceres/map_util.h"
#include "ceres/minimizer.h"
#include "ceres/ordered_groups.h"
#include "ceres/parameter_block.h"
#include "ceres/parameter_block_ordering.h"
#include "ceres/problem.h"
#include "ceres/problem_impl.h"
#include "ceres/program.h"
#include "ceres/residual_block.h"
#include "ceres/stringprintf.h"
#include "ceres/trust_region_minimizer.h"
#include "ceres/wall_time.h"

namespace ceres {
namespace internal {
namespace {

// Callback for updating the user's parameter blocks. Updates are only
// done if the step is successful.
class StateUpdatingCallback : public IterationCallback {
 public:
  StateUpdatingCallback(Program* program, double* parameters)
      : program_(program), parameters_(parameters) {}

  CallbackReturnType operator()(const IterationSummary& summary) {
    if (summary.step_is_successful) {
      program_->StateVectorToParameterBlocks(parameters_);
      program_->CopyParameterBlockStateToUserState();
    }
    return SOLVER_CONTINUE;
  }

 private:
  Program* program_;
  double* parameters_;
};

// Callback for logging the state of the minimizer to STDERR or STDOUT
// depending on the user's preferences and logging level.
class LoggingCallback : public IterationCallback {
 public:
  explicit LoggingCallback(bool log_to_stdout)
      : log_to_stdout_(log_to_stdout) {}

  ~LoggingCallback() {}

  CallbackReturnType operator()(const IterationSummary& summary) {
    const char* kReportRowFormat =
        "% 4d: f:% 8e d:% 3.2e g:% 3.2e h:% 3.2e "
        "rho:% 3.2e mu:% 3.2e li:% 3d it:% 3.2e tt:% 3.2e";
    string output = StringPrintf(kReportRowFormat,
                                 summary.iteration,
                                 summary.cost,
                                 summary.cost_change,
                                 summary.gradient_max_norm,
                                 summary.step_norm,
                                 summary.relative_decrease,
                                 summary.trust_region_radius,
                                 summary.linear_solver_iterations,
                                 summary.iteration_time_in_seconds,
                                 summary.cumulative_time_in_seconds);
    if (log_to_stdout_) {
      cout << output << endl;
    } else {
      VLOG(1) << output;
    }
    return SOLVER_CONTINUE;
  }

 private:
  const bool log_to_stdout_;
};

// Basic callback to record the execution of the solver to a file for
// offline analysis.
class FileLoggingCallback : public IterationCallback {
 public:
  explicit FileLoggingCallback(const string& filename)
      : fptr_(NULL) {
    fptr_ = fopen(filename.c_str(), "w");
    CHECK_NOTNULL(fptr_);
  }

  virtual ~FileLoggingCallback() {
    if (fptr_ != NULL) {
      fclose(fptr_);
    }
  }

  virtual CallbackReturnType operator()(const IterationSummary& summary) {
    fprintf(fptr_,
            "%4d %e %e\n",
            summary.iteration,
            summary.cost,
            summary.cumulative_time_in_seconds);
    return SOLVER_CONTINUE;
  }
 private:
    FILE* fptr_;
};

}  // namespace

void SolverImpl::Minimize(const Solver::Options& options,
                          Program* program,
                          CoordinateDescentMinimizer* inner_iteration_minimizer,
                          Evaluator* evaluator,
                          LinearSolver* linear_solver,
                          double* parameters,
                          Solver::Summary* summary) {
  Minimizer::Options minimizer_options(options);

  // TODO(sameeragarwal): Add support for logging the configuration
  // and more detailed stats.
  scoped_ptr<IterationCallback> file_logging_callback;
  if (!options.solver_log.empty()) {
    file_logging_callback.reset(new FileLoggingCallback(options.solver_log));
    minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
                                       file_logging_callback.get());
  }

  LoggingCallback logging_callback(options.minimizer_progress_to_stdout);
  if (options.logging_type != SILENT) {
    minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
                                       &logging_callback);
  }

  StateUpdatingCallback updating_callback(program, parameters);
  if (options.update_state_every_iteration) {
    // This must get pushed to the front of the callbacks so that it is run
    // before any of the user callbacks.
    minimizer_options.callbacks.insert(minimizer_options.callbacks.begin(),
                                       &updating_callback);
  }

  minimizer_options.evaluator = evaluator;
  scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian());
  minimizer_options.jacobian = jacobian.get();
  minimizer_options.inner_iteration_minimizer = inner_iteration_minimizer;

  TrustRegionStrategy::Options trust_region_strategy_options;
  trust_region_strategy_options.linear_solver = linear_solver;
  trust_region_strategy_options.initial_radius =
      options.initial_trust_region_radius;
  trust_region_strategy_options.max_radius = options.max_trust_region_radius;
  trust_region_strategy_options.lm_min_diagonal = options.lm_min_diagonal;
  trust_region_strategy_options.lm_max_diagonal = options.lm_max_diagonal;
  trust_region_strategy_options.trust_region_strategy_type =
      options.trust_region_strategy_type;
  trust_region_strategy_options.dogleg_type = options.dogleg_type;
  scoped_ptr<TrustRegionStrategy> strategy(
      TrustRegionStrategy::Create(trust_region_strategy_options));
  minimizer_options.trust_region_strategy = strategy.get();

  TrustRegionMinimizer minimizer;
  double minimizer_start_time = WallTimeInSeconds();
  minimizer.Minimize(minimizer_options, parameters, summary);
  summary->minimizer_time_in_seconds =
      WallTimeInSeconds() - minimizer_start_time;
}

void SolverImpl::Solve(const Solver::Options& original_options,
                       ProblemImpl* original_problem_impl,
                       Solver::Summary* summary) {
  double solver_start_time = WallTimeInSeconds();

  Program* original_program = original_problem_impl->mutable_program();
  ProblemImpl* problem_impl = original_problem_impl;

  // Reset the summary object to its default values.
  *CHECK_NOTNULL(summary) = Solver::Summary();

  summary->num_parameter_blocks = problem_impl->NumParameterBlocks();
  summary->num_parameters = problem_impl->NumParameters();
  summary->num_residual_blocks = problem_impl->NumResidualBlocks();
  summary->num_residuals = problem_impl->NumResiduals();

  // Empty programs are usually a user error.
  if (summary->num_parameter_blocks == 0) {
    summary->error = "Problem contains no parameter blocks.";
    LOG(ERROR) << summary->error;
    return;
  }

  if (summary->num_residual_blocks == 0) {
    summary->error = "Problem contains no residual blocks.";
    LOG(ERROR) << summary->error;
    return;
  }

  Solver::Options options(original_options);
  options.linear_solver_ordering = NULL;
  options.inner_iteration_ordering = NULL;

#ifndef CERES_USE_OPENMP
  if (options.num_threads > 1) {
    LOG(WARNING)
        << "OpenMP support is not compiled into this binary; "
        << "only options.num_threads=1 is supported. Switching "
        << "to single threaded mode.";
    options.num_threads = 1;
  }
  if (options.num_linear_solver_threads > 1) {
    LOG(WARNING)
        << "OpenMP support is not compiled into this binary; "
        << "only options.num_linear_solver_threads=1 is supported. Switching "
        << "to single threaded mode.";
    options.num_linear_solver_threads = 1;
  }
#endif

  summary->num_threads_given = original_options.num_threads;
  summary->num_threads_used = options.num_threads;

  if (options.lsqp_iterations_to_dump.size() > 0) {
    LOG(WARNING) << "Dumping linear least squares problems to disk is"
        " currently broken. Ignoring Solver::Options::lsqp_iterations_to_dump";
  }

  // Evaluate the initial cost, residual vector and the jacobian
  // matrix if requested by the user. The initial cost needs to be
  // computed on the original unpreprocessed problem, as it is used to
  // determine the value of the "fixed" part of the objective function
  // after the problem has undergone reduction.
  if (!Evaluator::Evaluate(original_program,
                           options.num_threads,
                           &(summary->initial_cost),
                           options.return_initial_residuals
                           ? &summary->initial_residuals
                           : NULL,
                           options.return_initial_gradient
                           ? &summary->initial_gradient
                           : NULL,
                           options.return_initial_jacobian
                           ? &summary->initial_jacobian
                           : NULL)) {
    summary->termination_type = NUMERICAL_FAILURE;
    summary->error = "Unable to evaluate the initial cost.";
    LOG(ERROR) << summary->error;
    return;
  }

  original_program->SetParameterBlockStatePtrsToUserStatePtrs();

  // If the user requests gradient checking, construct a new
  // ProblemImpl by wrapping the CostFunctions of problem_impl inside
  // GradientCheckingCostFunction and replacing problem_impl with
  // gradient_checking_problem_impl.
  scoped_ptr<ProblemImpl> gradient_checking_problem_impl;
  if (options.check_gradients) {
    VLOG(1) << "Checking Gradients";
    gradient_checking_problem_impl.reset(
        CreateGradientCheckingProblemImpl(
            problem_impl,
            options.numeric_derivative_relative_step_size,
            options.gradient_check_relative_precision));

    // From here on, problem_impl will point to the gradient checking
    // version.
    problem_impl = gradient_checking_problem_impl.get();
  }

  if (original_options.linear_solver_ordering != NULL) {
    if (!IsOrderingValid(original_options, problem_impl, &summary->error)) {
      LOG(ERROR) << summary->error;
      return;
    }
    options.linear_solver_ordering =
        new ParameterBlockOrdering(*original_options.linear_solver_ordering);
  } else {
    options.linear_solver_ordering = new ParameterBlockOrdering;
    const ProblemImpl::ParameterMap& parameter_map =
        problem_impl->parameter_map();
    for (ProblemImpl::ParameterMap::const_iterator it = parameter_map.begin();
         it != parameter_map.end();
         ++it) {
      options.linear_solver_ordering->AddElementToGroup(it->first, 0);
    }
  }

  // Create the three objects needed to minimize: the transformed program, the
  // evaluator, and the linear solver.
  scoped_ptr<Program> reduced_program(CreateReducedProgram(&options,
                                                           problem_impl,
                                                           &summary->fixed_cost,
                                                           &summary->error));
  if (reduced_program == NULL) {
    return;
  }

  summary->num_parameter_blocks_reduced = reduced_program->NumParameterBlocks();
  summary->num_parameters_reduced = reduced_program->NumParameters();
  summary->num_residual_blocks_reduced = reduced_program->NumResidualBlocks();
  summary->num_residuals_reduced = reduced_program->NumResiduals();

  if (summary->num_parameter_blocks_reduced == 0) {
    summary->preprocessor_time_in_seconds =
        WallTimeInSeconds() - solver_start_time;

    LOG(INFO) << "Terminating: FUNCTION_TOLERANCE reached. "
              << "No non-constant parameter blocks found.";

    // FUNCTION_TOLERANCE is the right convergence here, as we know
    // that the objective function is constant and cannot be changed
    // any further.
    summary->termination_type = FUNCTION_TOLERANCE;

    double post_process_start_time = WallTimeInSeconds();
    // Evaluate the final cost, residual vector and the jacobian
    // matrix if requested by the user.
    if (!Evaluator::Evaluate(original_program,
                             options.num_threads,
                             &summary->final_cost,
                             options.return_final_residuals
                             ? &summary->final_residuals
                             : NULL,
                             options.return_final_gradient
                             ? &summary->final_gradient
                             : NULL,
                             options.return_final_jacobian
                             ? &summary->final_jacobian
                             : NULL)) {
      summary->termination_type = NUMERICAL_FAILURE;
      summary->error = "Unable to evaluate the final cost.";
      LOG(ERROR) << summary->error;
      return;
    }

    // Ensure the program state is set to the user parameters on the way out.
    original_program->SetParameterBlockStatePtrsToUserStatePtrs();

    summary->postprocessor_time_in_seconds =
        WallTimeInSeconds() - post_process_start_time;
    return;
  }

  scoped_ptr<LinearSolver>
      linear_solver(CreateLinearSolver(&options, &summary->error));
  if (linear_solver == NULL) {
    return;
  }

  summary->linear_solver_type_given = original_options.linear_solver_type;
  summary->linear_solver_type_used = options.linear_solver_type;

  summary->preconditioner_type = options.preconditioner_type;

  summary->num_linear_solver_threads_given =
      original_options.num_linear_solver_threads;
  summary->num_linear_solver_threads_used = options.num_linear_solver_threads;

  summary->sparse_linear_algebra_library =
      options.sparse_linear_algebra_library;

  summary->trust_region_strategy_type = options.trust_region_strategy_type;
  summary->dogleg_type = options.dogleg_type;

  // Only Schur types require the lexicographic reordering.
  if (IsSchurType(options.linear_solver_type)) {
    const int num_eliminate_blocks =
        options.linear_solver_ordering
        ->group_to_elements().begin()
        ->second.size();
    if (!LexicographicallyOrderResidualBlocks(num_eliminate_blocks,
                                              reduced_program.get(),
                                              &summary->error)) {
      return;
    }
  }

  scoped_ptr<Evaluator> evaluator(CreateEvaluator(options,
                                                  problem_impl->parameter_map(),
                                                  reduced_program.get(),
                                                  &summary->error));
  if (evaluator == NULL) {
    return;
  }

  scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer;
  if (options.use_inner_iterations) {
    if (reduced_program->parameter_blocks().size() < 2) {
      LOG(WARNING) << "Reduced problem only contains one parameter block."
                   << "Disabling inner iterations.";
    } else {
      inner_iteration_minimizer.reset(
          CreateInnerIterationMinimizer(original_options,
                                        *reduced_program,
                                        problem_impl->parameter_map(),
                                        &summary->error));
      if (inner_iteration_minimizer == NULL) {
        LOG(ERROR) << summary->error;
        return;
      }
    }
  }

  // The optimizer works on contiguous parameter vectors; allocate some.
  Vector parameters(reduced_program->NumParameters());

  // Collect the discontiguous parameters into a contiguous state vector.
  reduced_program->ParameterBlocksToStateVector(parameters.data());

  Vector original_parameters = parameters;

  double minimizer_start_time = WallTimeInSeconds();
  summary->preprocessor_time_in_seconds =
      minimizer_start_time - solver_start_time;

  // Run the optimization.
  Minimize(options,
           reduced_program.get(),
           inner_iteration_minimizer.get(),
           evaluator.get(),
           linear_solver.get(),
           parameters.data(),
           summary);

  // If the user aborted mid-optimization or the optimization
  // terminated because of a numerical failure, then return without
  // updating user state.
  if (summary->termination_type == USER_ABORT ||
      summary->termination_type == NUMERICAL_FAILURE) {
    return;
  }

  double post_process_start_time = WallTimeInSeconds();

  // Push the contiguous optimized parameters back to the user's parameters.
  reduced_program->StateVectorToParameterBlocks(parameters.data());
  reduced_program->CopyParameterBlockStateToUserState();

  // Evaluate the final cost, residual vector and the jacobian
  // matrix if requested by the user.
  if (!Evaluator::Evaluate(original_program,
                           options.num_threads,
                           &summary->final_cost,
                           options.return_final_residuals
                           ? &summary->final_residuals
                           : NULL,
                           options.return_final_gradient
                           ? &summary->final_gradient
                           : NULL,
                           options.return_final_jacobian
                           ? &summary->final_jacobian
                           : NULL)) {
    // This failure requires careful handling.
    //
    // At this point, we have modified the user's state, but the
    // evaluation failed and we inform him of NUMERICAL_FAILURE. Ceres
    // guarantees that user's state is not modified if the solver
    // returns with NUMERICAL_FAILURE. Thus, we need to restore the
    // user's state to their original values.

    reduced_program->StateVectorToParameterBlocks(original_parameters.data());
    reduced_program->CopyParameterBlockStateToUserState();

    summary->termination_type = NUMERICAL_FAILURE;
    summary->error = "Unable to evaluate the final cost.";
    LOG(ERROR) << summary->error;
    return;
  }

  // Ensure the program state is set to the user parameters on the way out.
  original_program->SetParameterBlockStatePtrsToUserStatePtrs();

  // Stick a fork in it, we're done.
  summary->postprocessor_time_in_seconds =
      WallTimeInSeconds() - post_process_start_time;
}

bool SolverImpl::IsOrderingValid(const Solver::Options& options,
                                 const ProblemImpl* problem_impl,
                                 string* error) {
  if (options.linear_solver_ordering->NumElements() !=
      problem_impl->NumParameterBlocks()) {
      *error = "Number of parameter blocks in user supplied ordering "
          "does not match the number of parameter blocks in the problem";
    return false;
  }

  const Program& program = problem_impl->program();
  const vector<ParameterBlock*>& parameter_blocks = program.parameter_blocks();
  for (vector<ParameterBlock*>::const_iterator it = parameter_blocks.begin();
       it != parameter_blocks.end();
       ++it) {
    if (!options.linear_solver_ordering
        ->IsMember(const_cast<double*>((*it)->user_state()))) {
      *error = "Problem contains a parameter block that is not in "
          "the user specified ordering.";
      return false;
    }
  }

  if (IsSchurType(options.linear_solver_type) &&
      options.linear_solver_ordering->NumGroups() > 1) {
    const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
    const set<double*>& e_blocks  =
        options.linear_solver_ordering->group_to_elements().begin()->second;
    if (!IsParameterBlockSetIndependent(e_blocks, residual_blocks)) {
      *error = "The user requested the use of a Schur type solver. "
          "But the first elimination group in the ordering is not an "
          "independent set.";
      return false;
    }
  }
  return true;
}

bool SolverImpl::IsParameterBlockSetIndependent(const set<double*>& parameter_block_ptrs,
                                                const vector<ResidualBlock*>& residual_blocks) {
  // Loop over each residual block and ensure that no two parameter
  // blocks in the same residual block are part of
  // parameter_block_ptrs as that would violate the assumption that it
  // is an independent set in the Hessian matrix.
  for (vector<ResidualBlock*>::const_iterator it = residual_blocks.begin();
       it != residual_blocks.end();
       ++it) {
    ParameterBlock* const* parameter_blocks = (*it)->parameter_blocks();
    const int num_parameter_blocks = (*it)->NumParameterBlocks();
    int count = 0;
    for (int i = 0; i < num_parameter_blocks; ++i) {
      count += parameter_block_ptrs.count(
          parameter_blocks[i]->mutable_user_state());
    }
    if (count > 1) {
      return false;
    }
  }
  return true;
}


// Strips varying parameters and residuals, maintaining order, and updating
// num_eliminate_blocks.
bool SolverImpl::RemoveFixedBlocksFromProgram(Program* program,
                                              ParameterBlockOrdering* ordering,
                                              double* fixed_cost,
                                              string* error) {
  vector<ParameterBlock*>* parameter_blocks =
      program->mutable_parameter_blocks();

  scoped_array<double> residual_block_evaluate_scratch;
  if (fixed_cost != NULL) {
    residual_block_evaluate_scratch.reset(
        new double[program->MaxScratchDoublesNeededForEvaluate()]);
    *fixed_cost = 0.0;
  }

  // Mark all the parameters as unused. Abuse the index member of the parameter
  // blocks for the marking.
  for (int i = 0; i < parameter_blocks->size(); ++i) {
    (*parameter_blocks)[i]->set_index(-1);
  }

  // Filter out residual that have all-constant parameters, and mark all the
  // parameter blocks that appear in residuals.
  {
    vector<ResidualBlock*>* residual_blocks =
        program->mutable_residual_blocks();
    int j = 0;
    for (int i = 0; i < residual_blocks->size(); ++i) {
      ResidualBlock* residual_block = (*residual_blocks)[i];
      int num_parameter_blocks = residual_block->NumParameterBlocks();

      // Determine if the residual block is fixed, and also mark varying
      // parameters that appear in the residual block.
      bool all_constant = true;
      for (int k = 0; k < num_parameter_blocks; k++) {
        ParameterBlock* parameter_block = residual_block->parameter_blocks()[k];
        if (!parameter_block->IsConstant()) {
          all_constant = false;
          parameter_block->set_index(1);
        }
      }

      if (!all_constant) {
        (*residual_blocks)[j++] = (*residual_blocks)[i];
      } else if (fixed_cost != NULL) {
        // The residual is constant and will be removed, so its cost is
        // added to the variable fixed_cost.
        double cost = 0.0;
        if (!residual_block->Evaluate(
              &cost, NULL, NULL, residual_block_evaluate_scratch.get())) {
          *error = StringPrintf("Evaluation of the residual %d failed during "
                                "removal of fixed residual blocks.", i);
          return false;
        }
        *fixed_cost += cost;
      }
    }
    residual_blocks->resize(j);
  }

  // Filter out unused or fixed parameter blocks, and update
  // the ordering.
  {
    vector<ParameterBlock*>* parameter_blocks =
        program->mutable_parameter_blocks();
    int j = 0;
    for (int i = 0; i < parameter_blocks->size(); ++i) {
      ParameterBlock* parameter_block = (*parameter_blocks)[i];
      if (parameter_block->index() == 1) {
        (*parameter_blocks)[j++] = parameter_block;
      } else {
        ordering->Remove(parameter_block->mutable_user_state());
      }
    }
    parameter_blocks->resize(j);
  }

  CHECK(((program->NumResidualBlocks() == 0) &&
         (program->NumParameterBlocks() == 0)) ||
        ((program->NumResidualBlocks() != 0) &&
         (program->NumParameterBlocks() != 0)))
      << "Congratulations, you found a bug in Ceres. Please report it.";
  return true;
}

Program* SolverImpl::CreateReducedProgram(Solver::Options* options,
                                          ProblemImpl* problem_impl,
                                          double* fixed_cost,
                                          string* error) {
  CHECK_NOTNULL(options->linear_solver_ordering);
  Program* original_program = problem_impl->mutable_program();
  scoped_ptr<Program> transformed_program(new Program(*original_program));
  ParameterBlockOrdering* linear_solver_ordering =
      options->linear_solver_ordering;

  const int min_group_id =
      linear_solver_ordering->group_to_elements().begin()->first;
  const int original_num_groups = linear_solver_ordering->NumGroups();

  if (!RemoveFixedBlocksFromProgram(transformed_program.get(),
                                    linear_solver_ordering,
                                    fixed_cost,
                                    error)) {
    return NULL;
  }

  if (transformed_program->NumParameterBlocks() == 0) {
    if (transformed_program->NumResidualBlocks() > 0) {
      *error = "Zero parameter blocks but non-zero residual blocks"
          " in the reduced program. Congratulations, you found a "
          "Ceres bug! Please report this error to the developers.";
      return NULL;
    }

    LOG(WARNING) << "No varying parameter blocks to optimize; "
                 << "bailing early.";
    return transformed_program.release();
  }

  // If the user supplied an linear_solver_ordering with just one
  // group, it is equivalent to the user supplying NULL as
  // ordering. Ceres is completely free to choose the parameter block
  // ordering as it sees fit. For Schur type solvers, this means that
  // the user wishes for Ceres to identify the e_blocks, which we do
  // by computing a maximal independent set.
  if (original_num_groups == 1 && IsSchurType(options->linear_solver_type)) {
    vector<ParameterBlock*> schur_ordering;
    const int num_eliminate_blocks = ComputeSchurOrdering(*transformed_program,
                                                          &schur_ordering);
    CHECK_EQ(schur_ordering.size(), transformed_program->NumParameterBlocks())
        << "Congratulations, you found a Ceres bug! Please report this error "
        << "to the developers.";

    for (int i = 0; i < schur_ordering.size(); ++i) {
      linear_solver_ordering->AddElementToGroup(
          schur_ordering[i]->mutable_user_state(),
          (i < num_eliminate_blocks) ? 0 : 1);
    }
  }

  if (!ApplyUserOrdering(problem_impl->parameter_map(),
                         linear_solver_ordering,
                         transformed_program.get(),
                         error)) {
    return NULL;
  }

  // If the user requested the use of a Schur type solver, and
  // supplied a non-NULL linear_solver_ordering object with more than
  // one elimination group, then it can happen that after all the
  // parameter blocks which are fixed or unused have been removed from
  // the program and the ordering, there are no more parameter blocks
  // in the first elimination group.
  //
  // In such a case, the use of a Schur type solver is not possible,
  // as they assume there is at least one e_block. Thus, we
  // automatically switch to one of the other solvers, depending on
  // the user's indicated preferences.
  if (IsSchurType(options->linear_solver_type) &&
      original_num_groups > 1 &&
      linear_solver_ordering->GroupSize(min_group_id) == 0) {
    string msg = "No e_blocks remaining. Switching from ";
    if (options->linear_solver_type == SPARSE_SCHUR) {
      options->linear_solver_type = SPARSE_NORMAL_CHOLESKY;
      msg += "SPARSE_SCHUR to SPARSE_NORMAL_CHOLESKY.";
    } else if (options->linear_solver_type == DENSE_SCHUR) {
      // TODO(sameeragarwal): This is probably not a great choice.
      // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can
      // take a BlockSparseMatrix as input.
      options->linear_solver_type = DENSE_QR;
      msg += "DENSE_SCHUR to DENSE_QR.";
    } else if (options->linear_solver_type == ITERATIVE_SCHUR) {
      msg += StringPrintf("ITERATIVE_SCHUR with %s preconditioner "
                          "to CGNR with JACOBI preconditioner.",
                          PreconditionerTypeToString(
                              options->preconditioner_type));
      options->linear_solver_type = CGNR;
      if (options->preconditioner_type != IDENTITY) {
        // CGNR currently only supports the JACOBI preconditioner.
        options->preconditioner_type = JACOBI;
      }
    }

    LOG(WARNING) << msg;
  }

  // Since the transformed program is the "active" program, and it is mutated,
  // update the parameter offsets and indices.
  transformed_program->SetParameterOffsetsAndIndex();
  return transformed_program.release();
}

LinearSolver* SolverImpl::CreateLinearSolver(Solver::Options* options,
                                             string* error) {
  CHECK_NOTNULL(options);
  CHECK_NOTNULL(options->linear_solver_ordering);
  CHECK_NOTNULL(error);

  if (options->trust_region_strategy_type == DOGLEG) {
    if (options->linear_solver_type == ITERATIVE_SCHUR ||
        options->linear_solver_type == CGNR) {
      *error = "DOGLEG only supports exact factorization based linear "
               "solvers. If you want to use an iterative solver please "
               "use LEVENBERG_MARQUARDT as the trust_region_strategy_type";
      return NULL;
    }
  }

#ifdef CERES_NO_SUITESPARSE
  if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
      options->sparse_linear_algebra_library == SUITE_SPARSE) {
    *error = "Can't use SPARSE_NORMAL_CHOLESKY with SUITESPARSE because "
             "SuiteSparse was not enabled when Ceres was built.";
    return NULL;
  }

  if (options->preconditioner_type == SCHUR_JACOBI) {
    *error =  "SCHUR_JACOBI preconditioner not suppored. Please build Ceres "
        "with SuiteSparse support.";
    return NULL;
  }

  if (options->preconditioner_type == CLUSTER_JACOBI) {
    *error =  "CLUSTER_JACOBI preconditioner not suppored. Please build Ceres "
        "with SuiteSparse support.";
    return NULL;
  }

  if (options->preconditioner_type == CLUSTER_TRIDIAGONAL) {
    *error =  "CLUSTER_TRIDIAGONAL preconditioner not suppored. Please build "
        "Ceres with SuiteSparse support.";
    return NULL;
  }
#endif

#ifdef CERES_NO_CXSPARSE
  if (options->linear_solver_type == SPARSE_NORMAL_CHOLESKY &&
      options->sparse_linear_algebra_library == CX_SPARSE) {
    *error = "Can't use SPARSE_NORMAL_CHOLESKY with CXSPARSE because "
             "CXSparse was not enabled when Ceres was built.";
    return NULL;
  }
#endif

#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
  if (options->linear_solver_type == SPARSE_SCHUR) {
    *error = "Can't use SPARSE_SCHUR because neither SuiteSparse nor"
        "CXSparse was enabled when Ceres was compiled.";
    return NULL;
  }
#endif

  if (options->linear_solver_max_num_iterations <= 0) {
    *error = "Solver::Options::linear_solver_max_num_iterations is 0.";
    return NULL;
  }
  if (options->linear_solver_min_num_iterations <= 0) {
    *error = "Solver::Options::linear_solver_min_num_iterations is 0.";
    return NULL;
  }
  if (options->linear_solver_min_num_iterations >
      options->linear_solver_max_num_iterations) {
    *error = "Solver::Options::linear_solver_min_num_iterations > "
        "Solver::Options::linear_solver_max_num_iterations.";
    return NULL;
  }

  LinearSolver::Options linear_solver_options;
  linear_solver_options.min_num_iterations =
        options->linear_solver_min_num_iterations;
  linear_solver_options.max_num_iterations =
      options->linear_solver_max_num_iterations;
  linear_solver_options.type = options->linear_solver_type;
  linear_solver_options.preconditioner_type = options->preconditioner_type;
  linear_solver_options.sparse_linear_algebra_library =
      options->sparse_linear_algebra_library;

  linear_solver_options.num_threads = options->num_linear_solver_threads;
  // The matrix used for storing the dense Schur complement has a
  // single lock guarding the whole matrix. Running the
  // SchurComplementSolver with multiple threads leads to maximum
  // contention and slowdown. If the problem is large enough to
  // benefit from a multithreaded schur eliminator, you should be
  // using a SPARSE_SCHUR solver anyways.
  if ((linear_solver_options.num_threads > 1) &&
      (linear_solver_options.type == DENSE_SCHUR)) {
    LOG(WARNING) << "Warning: Solver::Options::num_linear_solver_threads = "
                 << options->num_linear_solver_threads
                 << " with DENSE_SCHUR will result in poor performance; "
                 << "switching to single-threaded.";
    linear_solver_options.num_threads = 1;
  }
  options->num_linear_solver_threads = linear_solver_options.num_threads;

  linear_solver_options.use_block_amd = options->use_block_amd;
  const map<int, set<double*> >& groups =
      options->linear_solver_ordering->group_to_elements();
  for (map<int, set<double*> >::const_iterator it = groups.begin();
       it != groups.end();
       ++it) {
    linear_solver_options.elimination_groups.push_back(it->second.size());
  }
  // Schur type solvers, expect at least two elimination groups. If
  // there is only one elimination group, then CreateReducedProgram
  // guarantees that this group only contains e_blocks. Thus we add a
  // dummy elimination group with zero blocks in it.
  if (IsSchurType(linear_solver_options.type) &&
      linear_solver_options.elimination_groups.size() == 1) {
    linear_solver_options.elimination_groups.push_back(0);
  }

  return LinearSolver::Create(linear_solver_options);
}

bool SolverImpl::ApplyUserOrdering(const ProblemImpl::ParameterMap& parameter_map,
                                   const ParameterBlockOrdering* ordering,
                                   Program* program,
                                   string* error) {
  if (ordering->NumElements() != program->NumParameterBlocks()) {
    *error = StringPrintf("User specified ordering does not have the same "
                          "number of parameters as the problem. The problem"
                          "has %d blocks while the ordering has %d blocks.",
                          program->NumParameterBlocks(),
                          ordering->NumElements());
    return false;
  }

  vector<ParameterBlock*>* parameter_blocks =
      program->mutable_parameter_blocks();
  parameter_blocks->clear();

  const map<int, set<double*> >& groups =
      ordering->group_to_elements();

  for (map<int, set<double*> >::const_iterator group_it = groups.begin();
       group_it != groups.end();
       ++group_it) {
    const set<double*>& group = group_it->second;
    for (set<double*>::const_iterator parameter_block_ptr_it = group.begin();
         parameter_block_ptr_it != group.end();
         ++parameter_block_ptr_it) {
      ProblemImpl::ParameterMap::const_iterator parameter_block_it =
          parameter_map.find(*parameter_block_ptr_it);
      if (parameter_block_it == parameter_map.end()) {
        *error = StringPrintf("User specified ordering contains a pointer "
                              "to a double that is not a parameter block in the "
                              "problem. The invalid double is in group: %d",
                              group_it->first);
        return false;
      }
      parameter_blocks->push_back(parameter_block_it->second);
    }
  }
  return true;
}

// Find the minimum index of any parameter block to the given residual.
// Parameter blocks that have indices greater than num_eliminate_blocks are
// considered to have an index equal to num_eliminate_blocks.
int MinParameterBlock(const ResidualBlock* residual_block,
                      int num_eliminate_blocks) {
  int min_parameter_block_position = num_eliminate_blocks;
  for (int i = 0; i < residual_block->NumParameterBlocks(); ++i) {
    ParameterBlock* parameter_block = residual_block->parameter_blocks()[i];
    if (!parameter_block->IsConstant()) {
      CHECK_NE(parameter_block->index(), -1)
          << "Did you forget to call Program::SetParameterOffsetsAndIndex()? "
          << "This is a Ceres bug; please contact the developers!";
      min_parameter_block_position = std::min(parameter_block->index(),
                                              min_parameter_block_position);
    }
  }
  return min_parameter_block_position;
}

// Reorder the residuals for program, if necessary, so that the residuals
// involving each E block occur together. This is a necessary condition for the
// Schur eliminator, which works on these "row blocks" in the jacobian.
bool SolverImpl::LexicographicallyOrderResidualBlocks(const int num_eliminate_blocks,
                                                      Program* program,
                                                      string* error) {
  CHECK_GE(num_eliminate_blocks, 1)
      << "Congratulations, you found a Ceres bug! Please report this error "
      << "to the developers.";

  // Create a histogram of the number of residuals for each E block. There is an
  // extra bucket at the end to catch all non-eliminated F blocks.
  vector<int> residual_blocks_per_e_block(num_eliminate_blocks + 1);
  vector<ResidualBlock*>* residual_blocks = program->mutable_residual_blocks();
  vector<int> min_position_per_residual(residual_blocks->size());
  for (int i = 0; i < residual_blocks->size(); ++i) {
    ResidualBlock* residual_block = (*residual_blocks)[i];
    int position = MinParameterBlock(residual_block, num_eliminate_blocks);
    min_position_per_residual[i] = position;
    DCHECK_LE(position, num_eliminate_blocks);
    residual_blocks_per_e_block[position]++;
  }

  // Run a cumulative sum on the histogram, to obtain offsets to the start of
  // each histogram bucket (where each bucket is for the residuals for that
  // E-block).
  vector<int> offsets(num_eliminate_blocks + 1);
  std::partial_sum(residual_blocks_per_e_block.begin(),
                   residual_blocks_per_e_block.end(),
                   offsets.begin());
  CHECK_EQ(offsets.back(), residual_blocks->size())
      << "Congratulations, you found a Ceres bug! Please report this error "
      << "to the developers.";

  CHECK(find(residual_blocks_per_e_block.begin(),
             residual_blocks_per_e_block.end() - 1, 0) !=
        residual_blocks_per_e_block.end())
      << "Congratulations, you found a Ceres bug! Please report this error "
      << "to the developers.";

  // Fill in each bucket with the residual blocks for its corresponding E block.
  // Each bucket is individually filled from the back of the bucket to the front
  // of the bucket. The filling order among the buckets is dictated by the
  // residual blocks. This loop uses the offsets as counters; subtracting one
  // from each offset as a residual block is placed in the bucket. When the
  // filling is finished, the offset pointerts should have shifted down one
  // entry (this is verified below).
  vector<ResidualBlock*> reordered_residual_blocks(
      (*residual_blocks).size(), static_cast<ResidualBlock*>(NULL));
  for (int i = 0; i < residual_blocks->size(); ++i) {
    int bucket = min_position_per_residual[i];

    // Decrement the cursor, which should now point at the next empty position.
    offsets[bucket]--;

    // Sanity.
    CHECK(reordered_residual_blocks[offsets[bucket]] == NULL)
        << "Congratulations, you found a Ceres bug! Please report this error "
        << "to the developers.";

    reordered_residual_blocks[offsets[bucket]] = (*residual_blocks)[i];
  }

  // Sanity check #1: The difference in bucket offsets should match the
  // histogram sizes.
  for (int i = 0; i < num_eliminate_blocks; ++i) {
    CHECK_EQ(residual_blocks_per_e_block[i], offsets[i + 1] - offsets[i])
        << "Congratulations, you found a Ceres bug! Please report this error "
        << "to the developers.";
  }
  // Sanity check #2: No NULL's left behind.
  for (int i = 0; i < reordered_residual_blocks.size(); ++i) {
    CHECK(reordered_residual_blocks[i] != NULL)
        << "Congratulations, you found a Ceres bug! Please report this error "
        << "to the developers.";
  }

  // Now that the residuals are collected by E block, swap them in place.
  swap(*program->mutable_residual_blocks(), reordered_residual_blocks);
  return true;
}

Evaluator* SolverImpl::CreateEvaluator(const Solver::Options& options,
                                       const ProblemImpl::ParameterMap& parameter_map,
                                       Program* program,
                                       string* error) {
  Evaluator::Options evaluator_options;
  evaluator_options.linear_solver_type = options.linear_solver_type;
  evaluator_options.num_eliminate_blocks =
      (options.linear_solver_ordering->NumGroups() > 0 &&
       IsSchurType(options.linear_solver_type))
      ? (options.linear_solver_ordering
         ->group_to_elements().begin()
         ->second.size())
      : 0;
  evaluator_options.num_threads = options.num_threads;
  return Evaluator::Create(evaluator_options, program, error);
}

CoordinateDescentMinimizer* SolverImpl::CreateInnerIterationMinimizer(
    const Solver::Options& options,
    const Program& program,
    const ProblemImpl::ParameterMap& parameter_map,
    string* error) {
  scoped_ptr<CoordinateDescentMinimizer> inner_iteration_minimizer(
      new CoordinateDescentMinimizer);
  scoped_ptr<ParameterBlockOrdering> inner_iteration_ordering;
  ParameterBlockOrdering* ordering_ptr  = NULL;

  if (options.inner_iteration_ordering == NULL) {
    // Find a recursive decomposition of the Hessian matrix as a set
    // of independent sets of decreasing size and invert it. This
    // seems to work better in practice, i.e., Cameras before
    // points.
    inner_iteration_ordering.reset(new ParameterBlockOrdering);
    ComputeRecursiveIndependentSetOrdering(program,
                                           inner_iteration_ordering.get());
    inner_iteration_ordering->Reverse();
    ordering_ptr = inner_iteration_ordering.get();
  } else {
    const map<int, set<double*> >& group_to_elements =
        options.inner_iteration_ordering->group_to_elements();

    // Iterate over each group and verify that it is an independent
    // set.
    map<int, set<double*> >::const_iterator it = group_to_elements.begin();
    for ( ;it != group_to_elements.end(); ++it) {
      if (!IsParameterBlockSetIndependent(it->second,
                                          program.residual_blocks())) {
        *error =
            StringPrintf("The user-provided "
                         "parameter_blocks_for_inner_iterations does not "
                         "form an independent set. Group Id: %d", it->first);
        return NULL;
      }
    }
    ordering_ptr = options.inner_iteration_ordering;
  }

  if (!inner_iteration_minimizer->Init(program,
                                       parameter_map,
                                       *ordering_ptr,
                                       error)) {
    return NULL;
  }

  return inner_iteration_minimizer.release();
}

}  // namespace internal
}  // namespace ceres