aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl.h
blob: ebfb813b869e518ba91ae76f8cec1c1be0c77e1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)

#ifndef CERES_INTERNAL_SOLVER_IMPL_H_
#define CERES_INTERNAL_SOLVER_IMPL_H_

#include <set>
#include <string>
#include <vector>
#include "ceres/internal/port.h"
#include "ceres/ordered_groups.h"
#include "ceres/problem_impl.h"
#include "ceres/solver.h"

namespace ceres {
namespace internal {

class CoordinateDescentMinimizer;
class Evaluator;
class LinearSolver;
class Program;
class TripletSparseMatrix;

class SolverImpl {
 public:
  // Mirrors the interface in solver.h, but exposes implementation
  // details for testing internally.
  static void Solve(const Solver::Options& options,
                    ProblemImpl* problem_impl,
                    Solver::Summary* summary);

  static void TrustRegionSolve(const Solver::Options& options,
                               ProblemImpl* problem_impl,
                               Solver::Summary* summary);

  // Run the TrustRegionMinimizer for the given evaluator and configuration.
  static void TrustRegionMinimize(
      const Solver::Options &options,
      Program* program,
      CoordinateDescentMinimizer* inner_iteration_minimizer,
      Evaluator* evaluator,
      LinearSolver* linear_solver,
      double* parameters,
      Solver::Summary* summary);

#ifndef CERES_NO_LINE_SEARCH_MINIMIZER
  static void LineSearchSolve(const Solver::Options& options,
                              ProblemImpl* problem_impl,
                              Solver::Summary* summary);

  // Run the LineSearchMinimizer for the given evaluator and configuration.
  static void LineSearchMinimize(const Solver::Options &options,
                                 Program* program,
                                 Evaluator* evaluator,
                                 double* parameters,
                                 Solver::Summary* summary);
#endif  // CERES_NO_LINE_SEARCH_MINIMIZER

  // Create the transformed Program, which has all the fixed blocks
  // and residuals eliminated, and in the case of automatic schur
  // ordering, has the E blocks first in the resulting program, with
  // options.num_eliminate_blocks set appropriately.
  //
  // If fixed_cost is not NULL, the residual blocks that are removed
  // are evaluated and the sum of their cost is returned in fixed_cost.
  static Program* CreateReducedProgram(Solver::Options* options,
                                       ProblemImpl* problem_impl,
                                       double* fixed_cost,
                                       string* error);

  // Create the appropriate linear solver, taking into account any
  // config changes decided by CreateTransformedProgram(). The
  // selected linear solver, which may be different from what the user
  // selected; consider the case that the remaining elimininated
  // blocks is zero after removing fixed blocks.
  static LinearSolver* CreateLinearSolver(Solver::Options* options,
                                          string* error);

  // Reorder the residuals for program, if necessary, so that the
  // residuals involving e block (i.e., the first num_eliminate_block
  // parameter blocks) occur together. This is a necessary condition
  // for the Schur eliminator.
  static bool LexicographicallyOrderResidualBlocks(
      const int num_eliminate_blocks,
      Program* program,
      string* error);

  // Create the appropriate evaluator for the transformed program.
  static Evaluator* CreateEvaluator(
      const Solver::Options& options,
      const ProblemImpl::ParameterMap& parameter_map,
      Program* program,
      string* error);

  // Remove the fixed or unused parameter blocks and residuals
  // depending only on fixed parameters from the problem. Also updates
  // num_eliminate_blocks, since removed parameters changes the point
  // at which the eliminated blocks is valid.  If fixed_cost is not
  // NULL, the residual blocks that are removed are evaluated and the
  // sum of their cost is returned in fixed_cost.
  static bool RemoveFixedBlocksFromProgram(Program* program,
                                           ParameterBlockOrdering* ordering,
                                           double* fixed_cost,
                                           string* error);

  static bool IsOrderingValid(const Solver::Options& options,
                              const ProblemImpl* problem_impl,
                              string* error);

  static bool IsParameterBlockSetIndependent(
      const set<double*>& parameter_block_ptrs,
      const vector<ResidualBlock*>& residual_blocks);

  static CoordinateDescentMinimizer* CreateInnerIterationMinimizer(
      const Solver::Options& options,
      const Program& program,
      const ProblemImpl::ParameterMap& parameter_map,
      Solver::Summary* summary);

  // If the linear solver is of Schur type, then replace it with the
  // closest equivalent linear solver. This is done when the user
  // requested a Schur type solver but the problem structure makes it
  // impossible to use one.
  //
  // If the linear solver is not of Schur type, the function is a
  // no-op.
  static void AlternateLinearSolverForSchurTypeLinearSolver(
      Solver::Options* options);

  // Create a TripletSparseMatrix which contains the zero-one
  // structure corresponding to the block sparsity of the transpose of
  // the Jacobian matrix.
  //
  // Caller owns the result.
  static TripletSparseMatrix* CreateJacobianBlockSparsityTranspose(
      const Program* program);

  // Reorder the parameter blocks in program using the ordering
  static bool ApplyUserOrdering(
      const ProblemImpl::ParameterMap& parameter_map,
      const ParameterBlockOrdering* parameter_block_ordering,
      Program* program,
      string* error);

  // Sparse cholesky factorization routines when doing the sparse
  // cholesky factorization of the Jacobian matrix, reorders its
  // columns to reduce the fill-in. Compute this permutation and
  // re-order the parameter blocks.
  //
  // If the parameter_block_ordering contains more than one
  // elimination group and support for constrained fill-reducing
  // ordering is available in the sparse linear algebra library
  // (SuiteSparse version >= 4.2.0) then the fill reducing
  // ordering will take it into account, otherwise it will be ignored.
  static bool ReorderProgramForSparseNormalCholesky(
      const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
      const ParameterBlockOrdering* parameter_block_ordering,
      Program* program,
      string* error);

  // Schur type solvers require that all parameter blocks eliminated
  // by the Schur eliminator occur before others and the residuals be
  // sorted in lexicographic order of their parameter blocks.
  //
  // If the parameter_block_ordering only contains one elimination
  // group then a maximal independent set is computed and used as the
  // first elimination group, otherwise the user's ordering is used.
  //
  // If the linear solver type is SPARSE_SCHUR and support for
  // constrained fill-reducing ordering is available in the sparse
  // linear algebra library (SuiteSparse version >= 4.2.0) then
  // columns of the schur complement matrix are ordered to reduce the
  // fill-in the Cholesky factorization.
  //
  // Upon return, ordering contains the parameter block ordering that
  // was used to order the program.
  static bool ReorderProgramForSchurTypeLinearSolver(
      const LinearSolverType linear_solver_type,
      const SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type,
      const ProblemImpl::ParameterMap& parameter_map,
      ParameterBlockOrdering* parameter_block_ordering,
      Program* program,
      string* error);
};

}  // namespace internal
}  // namespace ceres

#endif  // CERES_INTERNAL_SOLVER_IMPL_H_