aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/system_test.cc
blob: 095b51e74c3d07acf8ff5cbe1cf816e0f1b4b31c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//         sameeragarwal@google.com (Sameer Agarwal)
//
// System level tests for Ceres. The current suite of two tests. The
// first test is a small test based on Powell's Function. It is a
// scalar problem with 4 variables. The second problem is a bundle
// adjustment problem with 16 cameras and two thousand cameras. The
// first problem is to test the sanity test the factorization based
// solvers. The second problem is used to test the various
// combinations of solvers, orderings, preconditioners and
// multithreading.

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <string>

#include "ceres/autodiff_cost_function.h"
#include "ceres/ordered_groups.h"
#include "ceres/problem.h"
#include "ceres/rotation.h"
#include "ceres/solver.h"
#include "ceres/stringprintf.h"
#include "ceres/test_util.h"
#include "ceres/types.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

namespace ceres {
namespace internal {

const bool kAutomaticOrdering = true;
const bool kUserOrdering = false;

// Struct used for configuring the solver.
struct SolverConfig {
  SolverConfig(LinearSolverType linear_solver_type,
               SparseLinearAlgebraLibraryType sparse_linear_algebra_library,
               bool use_automatic_ordering)
      : linear_solver_type(linear_solver_type),
        sparse_linear_algebra_library(sparse_linear_algebra_library),
        use_automatic_ordering(use_automatic_ordering),
        preconditioner_type(IDENTITY),
        num_threads(1) {
  }

  SolverConfig(LinearSolverType linear_solver_type,
               SparseLinearAlgebraLibraryType sparse_linear_algebra_library,
               bool use_automatic_ordering,
               PreconditionerType preconditioner_type)
      : linear_solver_type(linear_solver_type),
        sparse_linear_algebra_library(sparse_linear_algebra_library),
        use_automatic_ordering(use_automatic_ordering),
        preconditioner_type(preconditioner_type),
        num_threads(1) {
  }

  string ToString() const {
    return StringPrintf(
        "(%s, %s, %s, %s, %d)",
        LinearSolverTypeToString(linear_solver_type),
        SparseLinearAlgebraLibraryTypeToString(sparse_linear_algebra_library),
        use_automatic_ordering ? "AUTOMATIC" : "USER",
        PreconditionerTypeToString(preconditioner_type),
        num_threads);
  }

  LinearSolverType linear_solver_type;
  SparseLinearAlgebraLibraryType sparse_linear_algebra_library;
  bool use_automatic_ordering;
  PreconditionerType preconditioner_type;
  int num_threads;
};

// Templated function that given a set of solver configurations,
// instantiates a new copy of SystemTestProblem for each configuration
// and solves it. The solutions are expected to have residuals with
// coordinate-wise maximum absolute difference less than or equal to
// max_abs_difference.
//
// The template parameter SystemTestProblem is expected to implement
// the following interface.
//
//   class SystemTestProblem {
//     public:
//       SystemTestProblem();
//       Problem* mutable_problem();
//       Solver::Options* mutable_solver_options();
//   };
template <typename SystemTestProblem>
void RunSolversAndCheckTheyMatch(const vector<SolverConfig>& configurations,
                                 const double max_abs_difference) {
  int num_configurations = configurations.size();
  vector<SystemTestProblem*> problems;
  vector<vector<double> > final_residuals(num_configurations);

  for (int i = 0; i < num_configurations; ++i) {
    SystemTestProblem* system_test_problem = new SystemTestProblem();

    const SolverConfig& config = configurations[i];

    Solver::Options& options = *(system_test_problem->mutable_solver_options());
    options.linear_solver_type = config.linear_solver_type;
    options.sparse_linear_algebra_library =
        config.sparse_linear_algebra_library;
    options.preconditioner_type = config.preconditioner_type;
    options.num_threads = config.num_threads;
    options.num_linear_solver_threads = config.num_threads;

    if (config.use_automatic_ordering) {
      delete options.linear_solver_ordering;
      options.linear_solver_ordering = NULL;
    }

    LOG(INFO) << "Running solver configuration: "
              << config.ToString();

    Solver::Summary summary;
    Solve(options,
          system_test_problem->mutable_problem(),
          &summary);

    system_test_problem
        ->mutable_problem()
        ->Evaluate(Problem::EvaluateOptions(),
                   NULL,
                   &final_residuals[i],
                   NULL,
                   NULL);

    CHECK_NE(summary.termination_type, ceres::NUMERICAL_FAILURE)
        << "Solver configuration " << i << " failed.";
    problems.push_back(system_test_problem);

    // Compare the resulting solutions to each other. Arbitrarily take
    // SPARSE_NORMAL_CHOLESKY as the golden solve. We compare
    // solutions by comparing their residual vectors. We do not
    // compare parameter vectors because it is much more brittle and
    // error prone to do so, since the same problem can have nearly
    // the same residuals at two completely different positions in
    // parameter space.
    if (i > 0) {
      const vector<double>& reference_residuals = final_residuals[0];
      const vector<double>& current_residuals = final_residuals[i];

      for (int j = 0; j < reference_residuals.size(); ++j) {
        EXPECT_NEAR(current_residuals[j],
                    reference_residuals[j],
                    max_abs_difference)
            << "Not close enough residual:" << j
            << " reference " << reference_residuals[j]
            << " current " << current_residuals[j];
      }
    }
  }

  for (int i = 0; i < num_configurations; ++i) {
    delete problems[i];
  }
}

// This class implements the SystemTestProblem interface and provides
// access to an implementation of Powell's singular function.
//
//   F = 1/2 (f1^2 + f2^2 + f3^2 + f4^2)
//
//   f1 = x1 + 10*x2;
//   f2 = sqrt(5) * (x3 - x4)
//   f3 = (x2 - 2*x3)^2
//   f4 = sqrt(10) * (x1 - x4)^2
//
// The starting values are x1 = 3, x2 = -1, x3 = 0, x4 = 1.
// The minimum is 0 at (x1, x2, x3, x4) = 0.
//
// From: Testing Unconstrained Optimization Software by Jorge J. More, Burton S.
// Garbow and Kenneth E. Hillstrom in ACM Transactions on Mathematical Software,
// Vol 7(1), March 1981.
class PowellsFunction {
 public:
  PowellsFunction() {
    x_[0] =  3.0;
    x_[1] = -1.0;
    x_[2] =  0.0;
    x_[3] =  1.0;

    problem_.AddResidualBlock(
        new AutoDiffCostFunction<F1, 1, 1, 1>(new F1), NULL, &x_[0], &x_[1]);
    problem_.AddResidualBlock(
        new AutoDiffCostFunction<F2, 1, 1, 1>(new F2), NULL, &x_[2], &x_[3]);
    problem_.AddResidualBlock(
        new AutoDiffCostFunction<F3, 1, 1, 1>(new F3), NULL, &x_[1], &x_[2]);
    problem_.AddResidualBlock(
        new AutoDiffCostFunction<F4, 1, 1, 1>(new F4), NULL, &x_[0], &x_[3]);

    options_.max_num_iterations = 10;
  }

  Problem* mutable_problem() { return &problem_; }
  Solver::Options* mutable_solver_options() { return &options_; }

 private:
  // Templated functions used for automatically differentiated cost
  // functions.
  class F1 {
   public:
    template <typename T> bool operator()(const T* const x1,
                                          const T* const x2,
                                          T* residual) const {
      // f1 = x1 + 10 * x2;
      *residual = *x1 + T(10.0) * *x2;
      return true;
    }
  };

  class F2 {
   public:
    template <typename T> bool operator()(const T* const x3,
                                          const T* const x4,
                                          T* residual) const {
      // f2 = sqrt(5) (x3 - x4)
      *residual = T(sqrt(5.0)) * (*x3 - *x4);
      return true;
    }
  };

  class F3 {
   public:
    template <typename T> bool operator()(const T* const x2,
                                          const T* const x4,
                                          T* residual) const {
      // f3 = (x2 - 2 x3)^2
      residual[0] = (x2[0] - T(2.0) * x4[0]) * (x2[0] - T(2.0) * x4[0]);
      return true;
    }
  };

  class F4 {
   public:
    template <typename T> bool operator()(const T* const x1,
                                          const T* const x4,
                                          T* residual) const {
      // f4 = sqrt(10) (x1 - x4)^2
      residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
      return true;
    }
  };

  double x_[4];
  Problem problem_;
  Solver::Options options_;
};

TEST(SystemTest, PowellsFunction) {
  vector<SolverConfig> configs;
#define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering) \
  configs.push_back(SolverConfig(linear_solver,                           \
                                 sparse_linear_algebra_library,           \
                                 ordering))

  CONFIGURE(DENSE_QR,               SUITE_SPARSE, kAutomaticOrdering);
  CONFIGURE(DENSE_NORMAL_CHOLESKY,  SUITE_SPARSE, kAutomaticOrdering);
  CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering);

#ifndef CERES_NO_SUITESPARSE
  CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering);
#endif  // CERES_NO_SUITESPARSE

#ifndef CERES_NO_CXSPARSE
  CONFIGURE(SPARSE_NORMAL_CHOLESKY, CX_SPARSE,    kAutomaticOrdering);
#endif  // CERES_NO_CXSPARSE

  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering);

#undef CONFIGURE

  const double kMaxAbsoluteDifference = 1e-8;
  RunSolversAndCheckTheyMatch<PowellsFunction>(configs, kMaxAbsoluteDifference);
}

// This class implements the SystemTestProblem interface and provides
// access to a bundle adjustment problem. It is based on
// examples/bundle_adjustment_example.cc. Currently a small 16 camera
// problem is hard coded in the constructor. Going forward we may
// extend this to a larger number of problems.
class BundleAdjustmentProblem {
 public:
  BundleAdjustmentProblem() {
    const string input_file = TestFileAbsolutePath("problem-16-22106-pre.txt");
    ReadData(input_file);
    BuildProblem();
  }

  ~BundleAdjustmentProblem() {
    delete []point_index_;
    delete []camera_index_;
    delete []observations_;
    delete []parameters_;
  }

  Problem* mutable_problem() { return &problem_; }
  Solver::Options* mutable_solver_options() { return &options_; }

  int num_cameras()            const { return num_cameras_;        }
  int num_points()             const { return num_points_;         }
  int num_observations()       const { return num_observations_;   }
  const int* point_index()     const { return point_index_;  }
  const int* camera_index()    const { return camera_index_; }
  const double* observations() const { return observations_; }
  double* mutable_cameras() { return parameters_; }
  double* mutable_points() { return parameters_  + 9 * num_cameras_; }

 private:
  void ReadData(const string& filename) {
    FILE * fptr = fopen(filename.c_str(), "r");

    if (!fptr) {
      LOG(FATAL) << "File Error: unable to open file " << filename;
    };

    // This will die horribly on invalid files. Them's the breaks.
    FscanfOrDie(fptr, "%d", &num_cameras_);
    FscanfOrDie(fptr, "%d", &num_points_);
    FscanfOrDie(fptr, "%d", &num_observations_);

    VLOG(1) << "Header: " << num_cameras_
            << " " << num_points_
            << " " << num_observations_;

    point_index_ = new int[num_observations_];
    camera_index_ = new int[num_observations_];
    observations_ = new double[2 * num_observations_];

    num_parameters_ = 9 * num_cameras_ + 3 * num_points_;
    parameters_ = new double[num_parameters_];

    for (int i = 0; i < num_observations_; ++i) {
      FscanfOrDie(fptr, "%d", camera_index_ + i);
      FscanfOrDie(fptr, "%d", point_index_ + i);
      for (int j = 0; j < 2; ++j) {
        FscanfOrDie(fptr, "%lf", observations_ + 2*i + j);
      }
    }

    for (int i = 0; i < num_parameters_; ++i) {
      FscanfOrDie(fptr, "%lf", parameters_ + i);
    }
  }

  void BuildProblem() {
    double* points = mutable_points();
    double* cameras = mutable_cameras();

    for (int i = 0; i < num_observations(); ++i) {
      // Each Residual block takes a point and a camera as input and
      // outputs a 2 dimensional residual.
      CostFunction* cost_function =
          new AutoDiffCostFunction<BundlerResidual, 2, 9, 3>(
              new BundlerResidual(observations_[2*i + 0],
                                  observations_[2*i + 1]));

      // Each observation correponds to a pair of a camera and a point
      // which are identified by camera_index()[i] and
      // point_index()[i] respectively.
      double* camera = cameras + 9 * camera_index_[i];
      double* point = points + 3 * point_index()[i];
      problem_.AddResidualBlock(cost_function, NULL, camera, point);
    }

    options_.linear_solver_ordering = new ParameterBlockOrdering;

    // The points come before the cameras.
    for (int i = 0; i < num_points_; ++i) {
      options_.linear_solver_ordering->AddElementToGroup(points + 3 * i, 0);
    }

    for (int i = 0; i < num_cameras_; ++i) {
      options_.linear_solver_ordering->AddElementToGroup(cameras + 9 * i, 1);
    }

    options_.max_num_iterations = 25;
    options_.function_tolerance = 1e-10;
    options_.gradient_tolerance = 1e-10;
    options_.parameter_tolerance = 1e-10;
  }

  template<typename T>
  void FscanfOrDie(FILE *fptr, const char *format, T *value) {
    int num_scanned = fscanf(fptr, format, value);
    if (num_scanned != 1) {
      LOG(FATAL) << "Invalid UW data file.";
    }
  }

  // Templated pinhole camera model.  The camera is parameterized
  // using 9 parameters. 3 for rotation, 3 for translation, 1 for
  // focal length and 2 for radial distortion. The principal point is
  // not modeled (i.e. it is assumed be located at the image center).
  struct BundlerResidual {
    // (u, v): the position of the observation with respect to the image
    // center point.
    BundlerResidual(double u, double v): u(u), v(v) {}

    template <typename T>
    bool operator()(const T* const camera,
                    const T* const point,
                    T* residuals) const {
      T p[3];
      AngleAxisRotatePoint(camera, point, p);

      // Add the translation vector
      p[0] += camera[3];
      p[1] += camera[4];
      p[2] += camera[5];

      const T& focal = camera[6];
      const T& l1 = camera[7];
      const T& l2 = camera[8];

      // Compute the center of distortion.  The sign change comes from
      // the camera model that Noah Snavely's Bundler assumes, whereby
      // the camera coordinate system has a negative z axis.
      T xp = - focal * p[0] / p[2];
      T yp = - focal * p[1] / p[2];

      // Apply second and fourth order radial distortion.
      T r2 = xp*xp + yp*yp;
      T distortion = T(1.0) + r2  * (l1 + l2  * r2);

      residuals[0] = distortion * xp - T(u);
      residuals[1] = distortion * yp - T(v);

      return true;
    }

    double u;
    double v;
  };


  Problem problem_;
  Solver::Options options_;

  int num_cameras_;
  int num_points_;
  int num_observations_;
  int num_parameters_;

  int* point_index_;
  int* camera_index_;
  double* observations_;
  // The parameter vector is laid out as follows
  // [camera_1, ..., camera_n, point_1, ..., point_m]
  double* parameters_;
};

TEST(SystemTest, BundleAdjustmentProblem) {
  vector<SolverConfig> configs;

#define CONFIGURE(linear_solver, sparse_linear_algebra_library, ordering, preconditioner) \
  configs.push_back(SolverConfig(linear_solver,                         \
                                 sparse_linear_algebra_library,         \
                                 ordering,                              \
                                 preconditioner))

#ifndef CERES_NO_SUITESPARSE
  CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
  CONFIGURE(SPARSE_NORMAL_CHOLESKY, SUITE_SPARSE, kUserOrdering,      IDENTITY);

  CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
  CONFIGURE(SPARSE_SCHUR,           SUITE_SPARSE, kUserOrdering,      IDENTITY);
#endif  // CERES_NO_SUITESPARSE

#ifndef CERES_NO_CXSPARSE
  CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kAutomaticOrdering, IDENTITY);
  CONFIGURE(SPARSE_SCHUR,           CX_SPARSE,    kUserOrdering,      IDENTITY);
#endif  // CERES_NO_CXSPARSE

  CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kAutomaticOrdering, IDENTITY);
  CONFIGURE(DENSE_SCHUR,            SUITE_SPARSE, kUserOrdering,      IDENTITY);

  CONFIGURE(CGNR,                   SUITE_SPARSE, kAutomaticOrdering, JACOBI);
  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      JACOBI);
  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      SCHUR_JACOBI);

#ifndef CERES_NO_SUITESPARSE

  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_JACOBI);
  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kUserOrdering,      CLUSTER_TRIDIAGONAL);
#endif  // CERES_NO_SUITESPARSE

  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, JACOBI);
  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, SCHUR_JACOBI);

#ifndef CERES_NO_SUITESPARSE

  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_JACOBI);
  CONFIGURE(ITERATIVE_SCHUR,        SUITE_SPARSE, kAutomaticOrdering, CLUSTER_TRIDIAGONAL);
#endif  // CERES_NO_SUITESPARSE

#undef CONFIGURE

  // Single threaded evaluators and linear solvers.
  const double kMaxAbsoluteDifference = 1e-4;
  RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs,
                                                       kMaxAbsoluteDifference);

#ifdef CERES_USE_OPENMP
  // Multithreaded evaluators and linear solvers.
  for (int i = 0; i < configs.size(); ++i) {
    configs[i].num_threads = 2;
  }
  RunSolversAndCheckTheyMatch<BundleAdjustmentProblem>(configs,
                                                       kMaxAbsoluteDifference);
#endif  // CERES_USE_OPENMP
}

}  // namespace internal
}  // namespace ceres