// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/container_names.h" #include #include #include "base/basictypes.h" #include "base/logging.h" #include "media/base/bit_reader.h" namespace media { namespace container_names { #define TAG(a, b, c, d) \ ((static_cast(a) << 24) | (static_cast(b) << 16) | \ (static_cast(c) << 8) | (static_cast(d))) #define RCHECK(x) \ do { \ if (!(x)) \ return false; \ } while (0) #define UTF8_BYTE_ORDER_MARK "\xef\xbb\xbf" // Helper function to read 2 bytes (16 bits, big endian) from a buffer. static int Read16(const uint8* p) { return p[0] << 8 | p[1]; } // Helper function to read 3 bytes (24 bits, big endian) from a buffer. static uint32 Read24(const uint8* p) { return p[0] << 16 | p[1] << 8 | p[2]; } // Helper function to read 4 bytes (32 bits, big endian) from a buffer. static uint32 Read32(const uint8* p) { return p[0] << 24 | p[1] << 16 | p[2] << 8 | p[3]; } // Helper function to read 4 bytes (32 bits, little endian) from a buffer. static uint32 Read32LE(const uint8* p) { return p[3] << 24 | p[2] << 16 | p[1] << 8 | p[0]; } // Helper function to do buffer comparisons with a string without going off the // end of the buffer. static bool StartsWith(const uint8* buffer, size_t buffer_size, const char* prefix) { size_t prefix_size = strlen(prefix); return (prefix_size <= buffer_size && memcmp(buffer, prefix, prefix_size) == 0); } // Helper function to do buffer comparisons with another buffer (to allow for // embedded \0 in the comparison) without going off the end of the buffer. static bool StartsWith(const uint8* buffer, size_t buffer_size, const uint8* prefix, size_t prefix_size) { return (prefix_size <= buffer_size && memcmp(buffer, prefix, prefix_size) == 0); } // Helper function to read up to 64 bits from a bit stream. static uint64 ReadBits(BitReader* reader, int num_bits) { DCHECK_GE(reader->bits_available(), num_bits); DCHECK((num_bits > 0) && (num_bits <= 64)); uint64 value; reader->ReadBits(num_bits, &value); return value; } const int kAc3FrameSizeTable[38][3] = { { 128, 138, 192 }, { 128, 140, 192 }, { 160, 174, 240 }, { 160, 176, 240 }, { 192, 208, 288 }, { 192, 210, 288 }, { 224, 242, 336 }, { 224, 244, 336 }, { 256, 278, 384 }, { 256, 280, 384 }, { 320, 348, 480 }, { 320, 350, 480 }, { 384, 416, 576 }, { 384, 418, 576 }, { 448, 486, 672 }, { 448, 488, 672 }, { 512, 556, 768 }, { 512, 558, 768 }, { 640, 696, 960 }, { 640, 698, 960 }, { 768, 834, 1152 }, { 768, 836, 1152 }, { 896, 974, 1344 }, { 896, 976, 1344 }, { 1024, 1114, 1536 }, { 1024, 1116, 1536 }, { 1280, 1392, 1920 }, { 1280, 1394, 1920 }, { 1536, 1670, 2304 }, { 1536, 1672, 2304 }, { 1792, 1950, 2688 }, { 1792, 1952, 2688 }, { 2048, 2228, 3072 }, { 2048, 2230, 3072 }, { 2304, 2506, 3456 }, { 2304, 2508, 3456 }, { 2560, 2768, 3840 }, { 2560, 2770, 3840 } }; // Checks for an ADTS AAC container. static bool CheckAac(const uint8* buffer, int buffer_size) { // Audio Data Transport Stream (ADTS) header is 7 or 9 bytes // (from http://wiki.multimedia.cx/index.php?title=ADTS) RCHECK(buffer_size > 6); int offset = 0; while (offset + 6 < buffer_size) { BitReader reader(buffer + offset, 6); // Syncword must be 0xfff. RCHECK(ReadBits(&reader, 12) == 0xfff); // Skip MPEG version. reader.SkipBits(1); // Layer is always 0. RCHECK(ReadBits(&reader, 2) == 0); // Skip protection + profile. reader.SkipBits(1 + 2); // Check sampling frequency index. RCHECK(ReadBits(&reader, 4) != 15); // Forbidden. // Skip private stream, channel configuration, originality, home, // copyrighted stream, and copyright_start. reader.SkipBits(1 + 3 + 1 + 1 + 1 + 1); // Get frame length (includes header). int size = ReadBits(&reader, 13); RCHECK(size > 0); offset += size; } return true; } const uint16 kAc3SyncWord = 0x0b77; // Checks for an AC3 container. static bool CheckAc3(const uint8* buffer, int buffer_size) { // Reference: ATSC Standard: Digital Audio Compression (AC-3, E-AC-3) // Doc. A/52:2012 // (http://www.atsc.org/cms/standards/A52-2012(12-17).pdf) // AC3 container looks like syncinfo | bsi | audblk * 6 | aux | check. RCHECK(buffer_size > 6); int offset = 0; while (offset + 6 < buffer_size) { BitReader reader(buffer + offset, 6); // Check syncinfo. RCHECK(ReadBits(&reader, 16) == kAc3SyncWord); // Skip crc1. reader.SkipBits(16); // Verify fscod. int sample_rate_code = ReadBits(&reader, 2); RCHECK(sample_rate_code != 3); // Reserved. // Verify frmsizecod. int frame_size_code = ReadBits(&reader, 6); RCHECK(frame_size_code < 38); // Undefined. // Verify bsid. RCHECK(ReadBits(&reader, 5) < 10); // Normally 8 or 6, 16 used by EAC3. offset += kAc3FrameSizeTable[frame_size_code][sample_rate_code]; } return true; } // Checks for an EAC3 container (very similar to AC3) static bool CheckEac3(const uint8* buffer, int buffer_size) { // Reference: ATSC Standard: Digital Audio Compression (AC-3, E-AC-3) // Doc. A/52:2012 // (http://www.atsc.org/cms/standards/A52-2012(12-17).pdf) // EAC3 container looks like syncinfo | bsi | audfrm | audblk* | aux | check. RCHECK(buffer_size > 6); int offset = 0; while (offset + 6 < buffer_size) { BitReader reader(buffer + offset, 6); // Check syncinfo. RCHECK(ReadBits(&reader, 16) == kAc3SyncWord); // Verify strmtyp. RCHECK(ReadBits(&reader, 2) != 3); // Skip substreamid. reader.SkipBits(3); // Get frmsize. Include syncinfo size and convert to bytes. int frame_size = (ReadBits(&reader, 11) + 1) * 2; RCHECK(frame_size >= 7); // Skip fscod, fscod2, acmod, and lfeon. reader.SkipBits(2 + 2 + 3 + 1); // Verify bsid. int bit_stream_id = ReadBits(&reader, 5); RCHECK(bit_stream_id >= 11 && bit_stream_id <= 16); offset += frame_size; } return true; } // Additional checks for a BINK container. static bool CheckBink(const uint8* buffer, int buffer_size) { // Reference: http://wiki.multimedia.cx/index.php?title=Bink_Container RCHECK(buffer_size >= 44); // Verify number of frames specified. RCHECK(Read32LE(buffer + 8) > 0); // Verify width in range. int width = Read32LE(buffer + 20); RCHECK(width > 0 && width <= 32767); // Verify height in range. int height = Read32LE(buffer + 24); RCHECK(height > 0 && height <= 32767); // Verify frames per second specified. RCHECK(Read32LE(buffer + 28) > 0); // Verify video frames per second specified. RCHECK(Read32LE(buffer + 32) > 0); // Number of audio tracks must be 256 or less. return (Read32LE(buffer + 40) <= 256); } // Additional checks for a CAF container. static bool CheckCaf(const uint8* buffer, int buffer_size) { // Reference: Apple Core Audio Format Specification 1.0 // (https://developer.apple.com/library/mac/#documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html) RCHECK(buffer_size >= 52); BitReader reader(buffer, buffer_size); // mFileType should be "caff". RCHECK(ReadBits(&reader, 32) == TAG('c', 'a', 'f', 'f')); // mFileVersion should be 1. RCHECK(ReadBits(&reader, 16) == 1); // Skip mFileFlags. reader.SkipBits(16); // First chunk should be Audio Description chunk, size 32l. RCHECK(ReadBits(&reader, 32) == TAG('d', 'e', 's', 'c')); RCHECK(ReadBits(&reader, 64) == 32); // CAFAudioFormat.mSampleRate(float64) not 0 RCHECK(ReadBits(&reader, 64) != 0); // CAFAudioFormat.mFormatID not 0 RCHECK(ReadBits(&reader, 32) != 0); // Skip CAFAudioFormat.mBytesPerPacket and mFramesPerPacket. reader.SkipBits(32 + 32); // CAFAudioFormat.mChannelsPerFrame not 0 RCHECK(ReadBits(&reader, 32) != 0); return true; } static bool kSamplingFrequencyValid[16] = { false, true, true, true, false, false, true, true, true, false, false, true, true, true, false, false }; static bool kExtAudioIdValid[8] = { true, false, true, false, false, false, true, false }; // Additional checks for a DTS container. static bool CheckDts(const uint8* buffer, int buffer_size) { // Reference: ETSI TS 102 114 V1.3.1 (2011-08) // (http://www.etsi.org/deliver/etsi_ts/102100_102199/102114/01.03.01_60/ts_102114v010301p.pdf) RCHECK(buffer_size > 11); int offset = 0; while (offset + 11 < buffer_size) { BitReader reader(buffer + offset, 11); // Verify sync word. RCHECK(ReadBits(&reader, 32) == 0x7ffe8001); // Skip frame type and deficit sample count. reader.SkipBits(1 + 5); // Verify CRC present flag. RCHECK(ReadBits(&reader, 1) == 0); // CPF must be 0. // Verify number of PCM sample blocks. RCHECK(ReadBits(&reader, 7) >= 5); // Verify primary frame byte size. int frame_size = ReadBits(&reader, 14); RCHECK(frame_size >= 95); // Skip audio channel arrangement. reader.SkipBits(6); // Verify core audio sampling frequency is an allowed value. RCHECK(kSamplingFrequencyValid[ReadBits(&reader, 4)]); // Verify transmission bit rate is valid. RCHECK(ReadBits(&reader, 5) <= 25); // Verify reserved field is 0. RCHECK(ReadBits(&reader, 1) == 0); // Skip dynamic range flag, time stamp flag, auxiliary data flag, and HDCD. reader.SkipBits(1 + 1 + 1 + 1); // Verify extension audio descriptor flag is an allowed value. RCHECK(kExtAudioIdValid[ReadBits(&reader, 3)]); // Skip extended coding flag and audio sync word insertion flag. reader.SkipBits(1 + 1); // Verify low frequency effects flag is an allowed value. RCHECK(ReadBits(&reader, 2) != 3); offset += frame_size + 1; } return true; } // Checks for a DV container. static bool CheckDV(const uint8* buffer, int buffer_size) { // Reference: SMPTE 314M (Annex A has differences with IEC 61834). // (http://standards.smpte.org/content/978-1-61482-454-1/st-314-2005/SEC1.body.pdf) RCHECK(buffer_size > 11); int offset = 0; int current_sequence_number = -1; int last_block_number[6]; while (offset + 11 < buffer_size) { BitReader reader(buffer + offset, 11); // Decode ID data. Sections 5, 6, and 7 are reserved. int section = ReadBits(&reader, 3); RCHECK(section < 5); // Next bit must be 1. RCHECK(ReadBits(&reader, 1) == 1); // Skip arbitrary bits. reader.SkipBits(4); int sequence_number = ReadBits(&reader, 4); // Skip FSC. reader.SkipBits(1); // Next 3 bits must be 1. RCHECK(ReadBits(&reader, 3) == 7); int block_number = ReadBits(&reader, 8); if (section == 0) { // Header. // Validate the reserved bits in the next 8 bytes. reader.SkipBits(1); RCHECK(ReadBits(&reader, 1) == 0); RCHECK(ReadBits(&reader, 11) == 0x7ff); reader.SkipBits(4); RCHECK(ReadBits(&reader, 4) == 0xf); reader.SkipBits(4); RCHECK(ReadBits(&reader, 4) == 0xf); reader.SkipBits(4); RCHECK(ReadBits(&reader, 4) == 0xf); reader.SkipBits(3); RCHECK(ReadBits(&reader, 24) == 0xffffff); current_sequence_number = sequence_number; for (size_t i = 0; i < arraysize(last_block_number); ++i) last_block_number[i] = -1; } else { // Sequence number must match (this will also fail if no header seen). RCHECK(sequence_number == current_sequence_number); // Block number should be increasing. RCHECK(block_number > last_block_number[section]); last_block_number[section] = block_number; } // Move to next block. offset += 80; } return true; } // Checks for a GSM container. static bool CheckGsm(const uint8* buffer, int buffer_size) { // Reference: ETSI EN 300 961 V8.1.1 // (http://www.etsi.org/deliver/etsi_en/300900_300999/300961/08.01.01_60/en_300961v080101p.pdf) // also http://tools.ietf.org/html/rfc3551#page-24 // GSM files have a 33 byte block, only first 4 bits are fixed. RCHECK(buffer_size >= 1024); // Need enough data to do a decent check. int offset = 0; while (offset < buffer_size) { // First 4 bits of each block are xD. RCHECK((buffer[offset] & 0xf0) == 0xd0); offset += 33; } return true; } // Advance to the first set of |num_bits| bits that match |start_code|. |offset| // is the current location in the buffer, and is updated. |bytes_needed| is the // number of bytes that must remain in the buffer when |start_code| is found. // Returns true if start_code found (and enough space in the buffer after it), // false otherwise. static bool AdvanceToStartCode(const uint8* buffer, int buffer_size, int* offset, int bytes_needed, int num_bits, uint32 start_code) { DCHECK_GE(bytes_needed, 3); DCHECK_LE(num_bits, 24); // Only supports up to 24 bits. // Create a mask to isolate |num_bits| bits, once shifted over. uint32 bits_to_shift = 24 - num_bits; uint32 mask = (1 << num_bits) - 1; while (*offset + bytes_needed < buffer_size) { uint32 next = Read24(buffer + *offset); if (((next >> bits_to_shift) & mask) == start_code) return true; ++(*offset); } return false; } // Checks for an H.261 container. static bool CheckH261(const uint8* buffer, int buffer_size) { // Reference: ITU-T Recommendation H.261 (03/1993) // (http://www.itu.int/rec/T-REC-H.261-199303-I/en) RCHECK(buffer_size > 16); int offset = 0; bool seen_start_code = false; while (true) { // Advance to picture_start_code, if there is one. if (!AdvanceToStartCode(buffer, buffer_size, &offset, 4, 20, 0x10)) { // No start code found (or off end of buffer), so success if // there was at least one valid header. return seen_start_code; } // Now verify the block. AdvanceToStartCode() made sure that there are // at least 4 bytes remaining in the buffer. BitReader reader(buffer + offset, buffer_size - offset); RCHECK(ReadBits(&reader, 20) == 0x10); // Skip the temporal reference and PTYPE. reader.SkipBits(5 + 6); // Skip any extra insertion information. Since this is open-ended, if we run // out of bits assume that the buffer is correctly formatted. int extra = ReadBits(&reader, 1); while (extra == 1) { if (!reader.SkipBits(8)) return seen_start_code; if (!reader.ReadBits(1, &extra)) return seen_start_code; } // Next should be a Group of Blocks start code. Again, if we run out of // bits, then assume that the buffer up to here is correct, and the buffer // just happened to end in the middle of a header. int next; if (!reader.ReadBits(16, &next)) return seen_start_code; RCHECK(next == 1); // Move to the next block. seen_start_code = true; offset += 4; } } // Checks for an H.263 container. static bool CheckH263(const uint8* buffer, int buffer_size) { // Reference: ITU-T Recommendation H.263 (01/2005) // (http://www.itu.int/rec/T-REC-H.263-200501-I/en) // header is PSC(22b) + TR(8b) + PTYPE(8+b). RCHECK(buffer_size > 16); int offset = 0; bool seen_start_code = false; while (true) { // Advance to picture_start_code, if there is one. if (!AdvanceToStartCode(buffer, buffer_size, &offset, 9, 22, 0x20)) { // No start code found (or off end of buffer), so success if // there was at least one valid header. return seen_start_code; } // Now verify the block. AdvanceToStartCode() made sure that there are // at least 9 bytes remaining in the buffer. BitReader reader(buffer + offset, 9); RCHECK(ReadBits(&reader, 22) == 0x20); // Skip the temporal reference. reader.SkipBits(8); // Verify that the first 2 bits of PTYPE are 10b. RCHECK(ReadBits(&reader, 2) == 2); // Skip the split screen indicator, document camera indicator, and full // picture freeze release. reader.SkipBits(1 + 1 + 1); // Verify Source Format. int format = ReadBits(&reader, 3); RCHECK(format != 0 && format != 6); // Forbidden or reserved. if (format == 7) { // Verify full extended PTYPE. int ufep = ReadBits(&reader, 3); if (ufep == 1) { // Verify the optional part of PLUSPTYPE. format = ReadBits(&reader, 3); RCHECK(format != 0 && format != 7); // Reserved. reader.SkipBits(11); // Next 4 bits should be b1000. RCHECK(ReadBits(&reader, 4) == 8); // Not allowed. } else { RCHECK(ufep == 0); // Only 0 and 1 allowed. } // Verify picture type code is not a reserved value. int picture_type_code = ReadBits(&reader, 3); RCHECK(picture_type_code != 6 && picture_type_code != 7); // Reserved. // Skip picture resampling mode, reduced resolution mode, // and rounding type. reader.SkipBits(1 + 1 + 1); // Next 3 bits should be b001. RCHECK(ReadBits(&reader, 3) == 1); // Not allowed. } // Move to the next block. seen_start_code = true; offset += 9; } } // Checks for an H.264 container. static bool CheckH264(const uint8* buffer, int buffer_size) { // Reference: ITU-T Recommendation H.264 (01/2012) // (http://www.itu.int/rec/T-REC-H.264) // Section B.1: Byte stream NAL unit syntax and semantics. RCHECK(buffer_size > 4); int offset = 0; int parameter_count = 0; while (true) { // Advance to picture_start_code, if there is one. if (!AdvanceToStartCode(buffer, buffer_size, &offset, 4, 24, 1)) { // No start code found (or off end of buffer), so success if // there was at least one valid header. return parameter_count > 0; } // Now verify the block. AdvanceToStartCode() made sure that there are // at least 4 bytes remaining in the buffer. BitReader reader(buffer + offset, 4); RCHECK(ReadBits(&reader, 24) == 1); // Verify forbidden_zero_bit. RCHECK(ReadBits(&reader, 1) == 0); // Extract nal_ref_idc and nal_unit_type. int nal_ref_idc = ReadBits(&reader, 2); int nal_unit_type = ReadBits(&reader, 5); switch (nal_unit_type) { case 5: // Coded slice of an IDR picture. RCHECK(nal_ref_idc != 0); break; case 6: // Supplemental enhancement information (SEI). case 9: // Access unit delimiter. case 10: // End of sequence. case 11: // End of stream. case 12: // Filler data. RCHECK(nal_ref_idc == 0); break; case 7: // Sequence parameter set. case 8: // Picture parameter set. ++parameter_count; break; } // Skip the current start_code_prefix and move to the next. offset += 4; } } static const char kHlsSignature[] = "#EXTM3U"; static const char kHls1[] = "#EXT-X-STREAM-INF:"; static const char kHls2[] = "#EXT-X-TARGETDURATION:"; static const char kHls3[] = "#EXT-X-MEDIA-SEQUENCE:"; // Additional checks for a HLS container. static bool CheckHls(const uint8* buffer, int buffer_size) { // HLS is simply a play list used for Apple HTTP Live Streaming. // Reference: Apple HTTP Live Streaming Overview // (http://goo.gl/MIwxj) if (StartsWith(buffer, buffer_size, kHlsSignature)) { // Need to find "#EXT-X-STREAM-INF:", "#EXT-X-TARGETDURATION:", or // "#EXT-X-MEDIA-SEQUENCE:" somewhere in the buffer. Other playlists (like // WinAmp) only have additional lines with #EXTINF // (http://en.wikipedia.org/wiki/M3U). int offset = strlen(kHlsSignature); while (offset < buffer_size) { if (buffer[offset] == '#') { if (StartsWith(buffer + offset, buffer_size - offset, kHls1) || StartsWith(buffer + offset, buffer_size - offset, kHls2) || StartsWith(buffer + offset, buffer_size - offset, kHls3)) { return true; } } ++offset; } } return false; } // Checks for a MJPEG stream. static bool CheckMJpeg(const uint8* buffer, int buffer_size) { // Reference: ISO/IEC 10918-1 : 1993(E), Annex B // (http://www.w3.org/Graphics/JPEG/itu-t81.pdf) RCHECK(buffer_size >= 16); int offset = 0; int last_restart = -1; int num_codes = 0; while (offset + 5 < buffer_size) { // Marker codes are always a two byte code with the first byte xFF. RCHECK(buffer[offset] == 0xff); uint8 code = buffer[offset + 1]; RCHECK(code >= 0xc0 || code == 1); // Skip sequences of xFF. if (code == 0xff) { ++offset; continue; } // Success if the next marker code is EOI (end of image) if (code == 0xd9) return true; // Check remaining codes. if (code == 0xd8 || code == 1) { // SOI (start of image) / TEM (private use). No other data with header. offset += 2; } else if (code >= 0xd0 && code <= 0xd7) { // RST (restart) codes must be in sequence. No other data with header. int restart = code & 0x07; if (last_restart >= 0) RCHECK(restart == (last_restart + 1) % 8); last_restart = restart; offset += 2; } else { // All remaining marker codes are followed by a length of the header. int length = Read16(buffer + offset + 2) + 2; // Special handling of SOS (start of scan) marker since the entropy // coded data follows the SOS. Any xFF byte in the data block must be // followed by x00 in the data. if (code == 0xda) { int number_components = buffer[offset + 4]; RCHECK(length == 8 + 2 * number_components); // Advance to the next marker. offset += length; while (offset + 2 < buffer_size) { if (buffer[offset] == 0xff && buffer[offset + 1] != 0) break; ++offset; } } else { // Skip over the marker data for the other marker codes. offset += length; } } ++num_codes; } return (num_codes > 1); } enum Mpeg2StartCodes { PROGRAM_END_CODE = 0xb9, PACK_START_CODE = 0xba }; // Checks for a MPEG2 Program Stream. static bool CheckMpeg2ProgramStream(const uint8* buffer, int buffer_size) { // Reference: ISO/IEC 13818-1 : 2000 (E) / ITU-T Rec. H.222.0 (2000 E). RCHECK(buffer_size > 14); int offset = 0; while (offset + 14 < buffer_size) { BitReader reader(buffer + offset, 14); // Must start with pack_start_code. RCHECK(ReadBits(&reader, 24) == 1); RCHECK(ReadBits(&reader, 8) == PACK_START_CODE); // Determine MPEG version (MPEG1 has b0010, while MPEG2 has b01). int mpeg_version = ReadBits(&reader, 2); if (mpeg_version == 0) { // MPEG1, 10 byte header // Validate rest of version code RCHECK(ReadBits(&reader, 2) == 2); } else { RCHECK(mpeg_version == 1); } // Skip system_clock_reference_base [32..30]. reader.SkipBits(3); // Verify marker bit. RCHECK(ReadBits(&reader, 1) == 1); // Skip system_clock_reference_base [29..15]. reader.SkipBits(15); // Verify next marker bit. RCHECK(ReadBits(&reader, 1) == 1); // Skip system_clock_reference_base [14..0]. reader.SkipBits(15); // Verify next marker bit. RCHECK(ReadBits(&reader, 1) == 1); if (mpeg_version == 0) { // Verify second marker bit. RCHECK(ReadBits(&reader, 1) == 1); // Skip mux_rate. reader.SkipBits(22); // Verify next marker bit. RCHECK(ReadBits(&reader, 1) == 1); // Update offset to be after this header. offset += 12; } else { // Must be MPEG2. // Skip program_mux_rate. reader.SkipBits(22); // Verify pair of marker bits. RCHECK(ReadBits(&reader, 2) == 3); // Skip reserved. reader.SkipBits(5); // Update offset to be after this header. int pack_stuffing_length = ReadBits(&reader, 3); offset += 14 + pack_stuffing_length; } // Check for system headers and PES_packets. while (offset + 6 < buffer_size && Read24(buffer + offset) == 1) { // Next 8 bits determine stream type. int stream_id = buffer[offset + 3]; // Some stream types are reserved and shouldn't occur. if (mpeg_version == 0) RCHECK(stream_id != 0xbc && stream_id < 0xf0); else RCHECK(stream_id != 0xfc && stream_id != 0xfd && stream_id != 0xfe); // Some stream types are used for pack headers. if (stream_id == PACK_START_CODE) // back to outer loop. break; if (stream_id == PROGRAM_END_CODE) // end of stream. return true; int pes_length = Read16(buffer + offset + 4); RCHECK(pes_length > 0); offset = offset + 6 + pes_length; } } // Success as we are off the end of the buffer and liked everything // in the buffer. return true; } const uint8 kMpeg2SyncWord = 0x47; // Checks for a MPEG2 Transport Stream. static bool CheckMpeg2TransportStream(const uint8* buffer, int buffer_size) { // Spec: ISO/IEC 13818-1 : 2000 (E) / ITU-T Rec. H.222.0 (2000 E). // Normal packet size is 188 bytes. However, some systems add various error // correction data at the end, resulting in packet of length 192/204/208 // (https://en.wikipedia.org/wiki/MPEG_transport_stream). Determine the // length with the first packet. RCHECK(buffer_size >= 250); // Want more than 1 packet to check. int offset = 0; int packet_length = -1; while (buffer[offset] != kMpeg2SyncWord && offset < 20) { // Skip over any header in the first 20 bytes. ++offset; } while (offset + 6 < buffer_size) { BitReader reader(buffer + offset, 6); // Must start with sync byte. RCHECK(ReadBits(&reader, 8) == kMpeg2SyncWord); // Skip transport_error_indicator, payload_unit_start_indicator, and // transport_priority. reader.SkipBits(1 + 1 + 1); // Verify the pid is not a reserved value. int pid = ReadBits(&reader, 13); RCHECK(pid < 3 || pid > 15); // Skip transport_scrambling_control. reader.SkipBits(2); // Adaptation_field_control can not be 0. int adaptation_field_control = ReadBits(&reader, 2); RCHECK(adaptation_field_control != 0); // If there is an adaptation_field, verify it. if (adaptation_field_control >= 2) { // Skip continuity_counter. reader.SkipBits(4); // Get adaptation_field_length and verify it. int adaptation_field_length = ReadBits(&reader, 8); if (adaptation_field_control == 2) RCHECK(adaptation_field_length == 183); else RCHECK(adaptation_field_length <= 182); } // Attempt to determine the packet length on the first packet. if (packet_length < 0) { if (buffer[offset + 188] == kMpeg2SyncWord) packet_length = 188; else if (buffer[offset + 192] == kMpeg2SyncWord) packet_length = 192; else if (buffer[offset + 204] == kMpeg2SyncWord) packet_length = 204; else packet_length = 208; } offset += packet_length; } return true; } enum Mpeg4StartCodes { VISUAL_OBJECT_SEQUENCE_START_CODE = 0xb0, VISUAL_OBJECT_SEQUENCE_END_CODE = 0xb1, VISUAL_OBJECT_START_CODE = 0xb5, VOP_START_CODE = 0xb6 }; // Checks for a raw MPEG4 bitstream container. static bool CheckMpeg4BitStream(const uint8* buffer, int buffer_size) { // Defined in ISO/IEC 14496-2:2001. // However, no length ... simply scan for start code values. // Note tags are very similar to H.264. RCHECK(buffer_size > 4); int offset = 0; int sequence_start_count = 0; int sequence_end_count = 0; int visual_object_count = 0; int vop_count = 0; while (true) { // Advance to start_code, if there is one. if (!AdvanceToStartCode(buffer, buffer_size, &offset, 6, 24, 1)) { // Not a complete sequence in memory, so return true if we've seen a // visual_object_sequence_start_code and a visual_object_start_code. return (sequence_start_count > 0 && visual_object_count > 0); } // Now verify the block. AdvanceToStartCode() made sure that there are // at least 6 bytes remaining in the buffer. BitReader reader(buffer + offset, 6); RCHECK(ReadBits(&reader, 24) == 1); int start_code = ReadBits(&reader, 8); RCHECK(start_code < 0x30 || start_code > 0xaf); // 30..AF and RCHECK(start_code < 0xb7 || start_code > 0xb9); // B7..B9 reserved switch (start_code) { case VISUAL_OBJECT_SEQUENCE_START_CODE: { ++sequence_start_count; // Verify profile in not one of many reserved values. int profile = ReadBits(&reader, 8); RCHECK(profile > 0); RCHECK(profile < 0x04 || profile > 0x10); RCHECK(profile < 0x13 || profile > 0x20); RCHECK(profile < 0x23 || profile > 0x31); RCHECK(profile < 0x35 || profile > 0x41); RCHECK(profile < 0x43 || profile > 0x60); RCHECK(profile < 0x65 || profile > 0x70); RCHECK(profile < 0x73 || profile > 0x80); RCHECK(profile < 0x83 || profile > 0x90); RCHECK(profile < 0x95 || profile > 0xa0); RCHECK(profile < 0xa4 || profile > 0xb0); RCHECK(profile < 0xb5 || profile > 0xc0); RCHECK(profile < 0xc3 || profile > 0xd0); RCHECK(profile < 0xe4); break; } case VISUAL_OBJECT_SEQUENCE_END_CODE: RCHECK(++sequence_end_count == sequence_start_count); break; case VISUAL_OBJECT_START_CODE: { ++visual_object_count; if (ReadBits(&reader, 1) == 1) { int visual_object_verid = ReadBits(&reader, 4); RCHECK(visual_object_verid > 0 && visual_object_verid < 3); RCHECK(ReadBits(&reader, 3) != 0); } int visual_object_type = ReadBits(&reader, 4); RCHECK(visual_object_type > 0 && visual_object_type < 6); break; } case VOP_START_CODE: RCHECK(++vop_count <= visual_object_count); break; } // Skip this block. offset += 6; } } // Additional checks for a MOV/QuickTime/MPEG4 container. static bool CheckMov(const uint8* buffer, int buffer_size) { // Reference: ISO/IEC 14496-12:2005(E). // (http://standards.iso.org/ittf/PubliclyAvailableStandards/c061988_ISO_IEC_14496-12_2012.zip) RCHECK(buffer_size > 8); int offset = 0; while (offset + 8 < buffer_size) { int atomsize = Read32(buffer + offset); uint32 atomtype = Read32(buffer + offset + 4); // Only need to check for ones that are valid at the top level. switch (atomtype) { case TAG('f','t','y','p'): case TAG('p','d','i','n'): case TAG('m','o','o','v'): case TAG('m','o','o','f'): case TAG('m','f','r','a'): case TAG('m','d','a','t'): case TAG('f','r','e','e'): case TAG('s','k','i','p'): case TAG('m','e','t','a'): case TAG('m','e','c','o'): case TAG('s','t','y','p'): case TAG('s','i','d','x'): case TAG('s','s','i','x'): case TAG('p','r','f','t'): case TAG('b','l','o','c'): break; default: return false; } if (atomsize == 1) { // Indicates that the length is the next 64bits. if (offset + 16 > buffer_size) break; if (Read32(buffer + offset + 8) != 0) break; // Offset is way past buffer size. atomsize = Read32(buffer + offset + 12); } if (atomsize <= 0) break; // Indicates the last atom or length too big. offset += atomsize; } return true; } enum MPEGVersion { VERSION_25 = 0, VERSION_RESERVED, VERSION_2, VERSION_1 }; enum MPEGLayer { L_RESERVED = 0, LAYER_3, LAYER_2, LAYER_1 }; static int kSampleRateTable[4][4] = { { 11025, 12000, 8000, 0 }, // v2.5 { 0, 0, 0, 0 }, // not used { 22050, 24000, 16000, 0 }, // v2 { 44100, 48000, 32000, 0 } // v1 }; static int kBitRateTableV1L1[16] = { 0, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 352, 384, 416, 448, 0 }; static int kBitRateTableV1L2[16] = { 0, 32, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 0 }; static int kBitRateTableV1L3[16] = { 0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 0 }; static int kBitRateTableV2L1[16] = { 0, 32, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 224, 256, 0 }; static int kBitRateTableV2L23[16] = { 0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 0 }; static bool ValidMpegAudioFrameHeader(const uint8* header, int header_size, int* framesize) { // Reference: http://mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm. DCHECK_GE(header_size, 4); *framesize = 0; BitReader reader(header, 4); // Header can only be 4 bytes long. // Verify frame sync (11 bits) are all set. RCHECK(ReadBits(&reader, 11) == 0x7ff); // Verify MPEG audio version id. int version = ReadBits(&reader, 2); RCHECK(version != 1); // Reserved. // Verify layer. int layer = ReadBits(&reader, 2); RCHECK(layer != 0); // Skip protection bit. reader.SkipBits(1); // Verify bitrate index. int bitrate_index = ReadBits(&reader, 4); RCHECK(bitrate_index != 0xf); // Verify sampling rate frequency index. int sampling_index = ReadBits(&reader, 2); RCHECK(sampling_index != 3); // Get padding bit. int padding = ReadBits(&reader, 1); // Frame size: // For Layer I files = (12 * BitRate / SampleRate + Padding) * 4 // For others = 144 * BitRate / SampleRate + Padding // Unfortunately, BitRate and SampleRate are coded. int sampling_rate = kSampleRateTable[version][sampling_index]; int bitrate; if (version == VERSION_1) { if (layer == LAYER_1) bitrate = kBitRateTableV1L1[bitrate_index]; else if (layer == LAYER_2) bitrate = kBitRateTableV1L2[bitrate_index]; else bitrate = kBitRateTableV1L3[bitrate_index]; } else { if (layer == LAYER_1) bitrate = kBitRateTableV2L1[bitrate_index]; else bitrate = kBitRateTableV2L23[bitrate_index]; } if (layer == LAYER_1) *framesize = ((12000 * bitrate) / sampling_rate + padding) * 4; else *framesize = (144000 * bitrate) / sampling_rate + padding; return (bitrate > 0 && sampling_rate > 0); } // Extract a size encoded the MP3 way. static int GetMp3HeaderSize(const uint8* buffer, int buffer_size) { DCHECK_GE(buffer_size, 9); int size = ((buffer[6] & 0x7f) << 21) + ((buffer[7] & 0x7f) << 14) + ((buffer[8] & 0x7f) << 7) + (buffer[9] & 0x7f) + 10; if (buffer[5] & 0x10) // Footer added? size += 10; return size; } // Additional checks for a MP3 container. static bool CheckMp3(const uint8* buffer, int buffer_size, bool seenHeader) { RCHECK(buffer_size >= 10); // Must be enough to read the initial header. int framesize; int numSeen = 0; int offset = 0; if (seenHeader) { offset = GetMp3HeaderSize(buffer, buffer_size); } else { // Skip over leading 0's. while (offset < buffer_size && buffer[offset] == 0) ++offset; } while (offset + 3 < buffer_size) { RCHECK(ValidMpegAudioFrameHeader( buffer + offset, buffer_size - offset, &framesize)); // Have we seen enough valid headers? if (++numSeen > 10) return true; offset += framesize; } // Off the end of the buffer, return success if a few valid headers seen. return numSeen > 2; } // Check that the next characters in |buffer| represent a number. The format // accepted is optional whitespace followed by 1 or more digits. |max_digits| // specifies the maximum number of digits to process. Returns true if a valid // number is found, false otherwise. static bool VerifyNumber(const uint8* buffer, int buffer_size, int* offset, int max_digits) { RCHECK(*offset < buffer_size); // Skip over any leading space. while (isspace(buffer[*offset])) { ++(*offset); RCHECK(*offset < buffer_size); } // Need to process up to max_digits digits. int numSeen = 0; while (--max_digits >= 0 && isdigit(buffer[*offset])) { ++numSeen; ++(*offset); if (*offset >= buffer_size) return true; // Out of space but seen a digit. } // Success if at least one digit seen. return (numSeen > 0); } // Check that the next character in |buffer| is one of |c1| or |c2|. |c2| is // optional. Returns true if there is a match, false if no match or out of // space. static inline bool VerifyCharacters(const uint8* buffer, int buffer_size, int* offset, char c1, char c2) { RCHECK(*offset < buffer_size); char c = static_cast(buffer[(*offset)++]); return (c == c1 || (c == c2 && c2 != 0)); } // Checks for a SRT container. static bool CheckSrt(const uint8* buffer, int buffer_size) { // Reference: http://en.wikipedia.org/wiki/SubRip RCHECK(buffer_size > 20); // First line should just be the subtitle sequence number. int offset = StartsWith(buffer, buffer_size, UTF8_BYTE_ORDER_MARK) ? 3 : 0; RCHECK(VerifyNumber(buffer, buffer_size, &offset, 100)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '\n', '\r')); // Skip any additional \n\r. while (VerifyCharacters(buffer, buffer_size, &offset, '\n', '\r')) {} --offset; // Since VerifyCharacters() gobbled up the next non-CR/LF. // Second line should look like the following: // 00:00:10,500 --> 00:00:13,000 // Units separator can be , or . RCHECK(VerifyNumber(buffer, buffer_size, &offset, 100)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0)); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0)); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ',', '.')); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 3)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ' ', 0)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '-', 0)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '-', 0)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, '>', 0)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ' ', 0)); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 100)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0)); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ':', 0)); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 2)); RCHECK(VerifyCharacters(buffer, buffer_size, &offset, ',', '.')); RCHECK(VerifyNumber(buffer, buffer_size, &offset, 3)); return true; } // Read a Matroska Element Id. static int GetElementId(BitReader* reader) { // Element ID is coded with the leading zero bits (max 3) determining size. // If it is an invalid encoding or the end of the buffer is reached, // return -1 as a tag that won't be expected. if (reader->bits_available() >= 8) { int num_bits_to_read = 0; static int prefix[] = { 0x80, 0x4000, 0x200000, 0x10000000 }; for (int i = 0; i < 4; ++i) { num_bits_to_read += 7; if (ReadBits(reader, 1) == 1) { if (reader->bits_available() < num_bits_to_read) break; // prefix[] adds back the bits read individually. return ReadBits(reader, num_bits_to_read) | prefix[i]; } } } // Invalid encoding, return something not expected. return -1; } // Read a Matroska Unsigned Integer (VINT). static uint64 GetVint(BitReader* reader) { // Values are coded with the leading zero bits (max 7) determining size. // If it is an invalid coding or the end of the buffer is reached, // return something that will go off the end of the buffer. if (reader->bits_available() >= 8) { int num_bits_to_read = 0; for (int i = 0; i < 8; ++i) { num_bits_to_read += 7; if (ReadBits(reader, 1) == 1) { if (reader->bits_available() < num_bits_to_read) break; return ReadBits(reader, num_bits_to_read); } } } // Incorrect format (more than 7 leading 0's) or off the end of the buffer. // Since the return value is used as a byte size, return a value that will // cause a failure when used. return (reader->bits_available() / 8) + 2; } // Additional checks for a WEBM container. static bool CheckWebm(const uint8* buffer, int buffer_size) { // Reference: http://www.matroska.org/technical/specs/index.html RCHECK(buffer_size > 12); BitReader reader(buffer, buffer_size); // Verify starting Element Id. RCHECK(GetElementId(&reader) == 0x1a45dfa3); // Get the header size, and ensure there are enough bits to check. int header_size = GetVint(&reader); RCHECK(reader.bits_available() / 8 >= header_size); // Loop through the header. while (reader.bits_available() > 0) { int tag = GetElementId(&reader); int tagsize = GetVint(&reader); switch (tag) { case 0x4286: // EBMLVersion case 0x42f7: // EBMLReadVersion case 0x42f2: // EBMLMaxIdLength case 0x42f3: // EBMLMaxSizeLength case 0x4287: // DocTypeVersion case 0x4285: // DocTypeReadVersion case 0xec: // void case 0xbf: // CRC32 RCHECK(reader.SkipBits(tagsize * 8)); break; case 0x4282: // EBMLDocType // Need to see "webm" or "matroska" next. switch (ReadBits(&reader, 32)) { case TAG('w', 'e', 'b', 'm') : return true; case TAG('m', 'a', 't', 'r') : return (ReadBits(&reader, 32) == TAG('o', 's', 'k', 'a')); } return false; default: // Unrecognized tag return false; } } return false; } enum VC1StartCodes { VC1_FRAME_START_CODE = 0x0d, VC1_ENTRY_POINT_START_CODE = 0x0e, VC1_SEQUENCE_START_CODE = 0x0f }; // Checks for a VC1 bitstream container. static bool CheckVC1(const uint8* buffer, int buffer_size) { // Reference: SMPTE 421M // (http://standards.smpte.org/content/978-1-61482-555-5/st-421-2006/SEC1.body.pdf) // However, no length ... simply scan for start code values. // Expect to see SEQ | [ [ ENTRY ] PIC* ]* // Note tags are very similar to H.264. RCHECK(buffer_size >= 24); // First check for Bitstream Metadata Serialization (Annex L) if (buffer[0] == 0xc5 && Read32(buffer + 4) == 0x04 && Read32(buffer + 20) == 0x0c) { // Verify settings in STRUCT_C and STRUCT_A BitReader reader(buffer + 8, 12); int profile = ReadBits(&reader, 4); if (profile == 0 || profile == 4) { // simple or main // Skip FRMRTQ_POSTPROC, BITRTQ_POSTPROC, and LOOPFILTER. reader.SkipBits(3 + 5 + 1); // Next bit must be 0. RCHECK(ReadBits(&reader, 1) == 0); // Skip MULTIRES. reader.SkipBits(1); // Next bit must be 1. RCHECK(ReadBits(&reader, 1) == 1); // Skip FASTUVMC, EXTENDED_MV, DQUANT, and VSTRANSFORM. reader.SkipBits(1 + 1 + 2 + 1); // Next bit must be 0. RCHECK(ReadBits(&reader, 1) == 0); // Skip OVERLAP, SYNCMARKER, RANGERED, MAXBFRAMES, QUANTIZER, and // FINTERPFLAG. reader.SkipBits(1 + 1 + 1 + 3 + 2 + 1); // Next bit must be 1. RCHECK(ReadBits(&reader, 1) == 1); } else { RCHECK(profile == 12); // Other profile values not allowed. RCHECK(ReadBits(&reader, 28) == 0); } // Now check HORIZ_SIZE and VERT_SIZE, which must be 8192 or less. RCHECK(ReadBits(&reader, 32) <= 8192); RCHECK(ReadBits(&reader, 32) <= 8192); return true; } // Buffer isn't Bitstream Metadata, so scan for start codes. int offset = 0; int sequence_start_code = 0; int frame_start_code = 0; while (true) { // Advance to start_code, if there is one. if (!AdvanceToStartCode(buffer, buffer_size, &offset, 5, 24, 1)) { // Not a complete sequence in memory, so return true if we've seen a // sequence start and a frame start (not checking entry points since // they only occur in advanced profiles). return (sequence_start_code > 0 && frame_start_code > 0); } // Now verify the block. AdvanceToStartCode() made sure that there are // at least 5 bytes remaining in the buffer. BitReader reader(buffer + offset, 5); RCHECK(ReadBits(&reader, 24) == 1); // Keep track of the number of certain types received. switch (ReadBits(&reader, 8)) { case VC1_SEQUENCE_START_CODE: { ++sequence_start_code; switch (ReadBits(&reader, 2)) { case 0: // simple case 1: // main RCHECK(ReadBits(&reader, 2) == 0); break; case 2: // complex return false; case 3: // advanced RCHECK(ReadBits(&reader, 3) <= 4); // Verify level = 0..4 RCHECK(ReadBits(&reader, 2) == 1); // Verify colordiff_format = 1 break; } break; } case VC1_ENTRY_POINT_START_CODE: // No fields in entry data to check. However, it must occur after // sequence header. RCHECK(sequence_start_code > 0); break; case VC1_FRAME_START_CODE: ++frame_start_code; break; } offset += 5; } } // For some formats the signature is a bunch of characters. They are defined // below. Note that the first 4 characters of the string may be used as a TAG // in LookupContainerByFirst4. For signatures that contain embedded \0, use // uint8[]. static const char kAmrSignature[] = "#!AMR"; static const uint8 kAsfSignature[] = { 0x30, 0x26, 0xb2, 0x75, 0x8e, 0x66, 0xcf, 0x11, 0xa6, 0xd9, 0x00, 0xaa, 0x00, 0x62, 0xce, 0x6c }; static const char kAssSignature[] = "[Script Info]"; static const char kAssBomSignature[] = UTF8_BYTE_ORDER_MARK "[Script Info]"; static const uint8 kWtvSignature[] = { 0xb7, 0xd8, 0x00, 0x20, 0x37, 0x49, 0xda, 0x11, 0xa6, 0x4e, 0x00, 0x07, 0xe9, 0x5e, 0xad, 0x8d }; // Attempt to determine the container type from the buffer provided. This is // a simple pass, that uses the first 4 bytes of the buffer as an index to get // a rough idea of the container format. static MediaContainerName LookupContainerByFirst4(const uint8* buffer, int buffer_size) { // Minimum size that the code expects to exist without checking size. if (buffer_size < 12) return CONTAINER_UNKNOWN; uint32 first4 = Read32(buffer); switch (first4) { case 0x1a45dfa3: if (CheckWebm(buffer, buffer_size)) return CONTAINER_WEBM; break; case 0x3026b275: if (StartsWith(buffer, buffer_size, kAsfSignature, sizeof(kAsfSignature))) { return CONTAINER_ASF; } break; case TAG('#','!','A','M'): if (StartsWith(buffer, buffer_size, kAmrSignature)) return CONTAINER_AMR; break; case TAG('#','E','X','T'): if (CheckHls(buffer, buffer_size)) return CONTAINER_HLS; break; case TAG('.','R','M','F'): if (buffer[4] == 0 && buffer[5] == 0) return CONTAINER_RM; break; case TAG('.','r','a','\xfd'): return CONTAINER_RM; case TAG('B','I','K','b'): case TAG('B','I','K','d'): case TAG('B','I','K','f'): case TAG('B','I','K','g'): case TAG('B','I','K','h'): case TAG('B','I','K','i'): if (CheckBink(buffer, buffer_size)) return CONTAINER_BINK; break; case TAG('c','a','f','f'): if (CheckCaf(buffer, buffer_size)) return CONTAINER_CAF; break; case TAG('D','E','X','A'): if (buffer_size > 15 && Read16(buffer + 11) <= 2048 && Read16(buffer + 13) <= 2048) { return CONTAINER_DXA; } break; case TAG('D','T','S','H'): if (Read32(buffer + 4) == TAG('D','H','D','R')) return CONTAINER_DTSHD; break; case 0x64a30100: case 0x64a30200: case 0x64a30300: case 0x64a30400: case 0x0001a364: case 0x0002a364: case 0x0003a364: if (Read32(buffer + 4) != 0 && Read32(buffer + 8) != 0) return CONTAINER_IRCAM; break; case TAG('f','L','a','C'): return CONTAINER_FLAC; case TAG('F','L','V',0): case TAG('F','L','V',1): case TAG('F','L','V',2): case TAG('F','L','V',3): case TAG('F','L','V',4): if (buffer[5] == 0 && Read32(buffer + 5) > 8) return CONTAINER_FLV; break; case TAG('F','O','R','M'): switch (Read32(buffer + 8)) { case TAG('A','I','F','F'): case TAG('A','I','F','C'): return CONTAINER_AIFF; } break; case TAG('M','A','C',' '): return CONTAINER_APE; case TAG('O','N','2',' '): if (Read32(buffer + 8) == TAG('O','N','2','f')) return CONTAINER_AVI; break; case TAG('O','g','g','S'): if (buffer[5] <= 7) return CONTAINER_OGG; break; case TAG('R','F','6','4'): if (buffer_size > 16 && Read32(buffer + 12) == TAG('d','s','6','4')) return CONTAINER_WAV; break; case TAG('R','I','F','F'): switch (Read32(buffer + 8)) { case TAG('A','V','I',' '): case TAG('A','V','I','X'): case TAG('A','V','I','\x19'): case TAG('A','M','V',' '): return CONTAINER_AVI; case TAG('W','A','V','E'): return CONTAINER_WAV; } break; case TAG('[','S','c','r'): if (StartsWith(buffer, buffer_size, kAssSignature)) return CONTAINER_ASS; break; case TAG('\xef','\xbb','\xbf','['): if (StartsWith(buffer, buffer_size, kAssBomSignature)) return CONTAINER_ASS; break; case 0x7ffe8001: case 0xfe7f0180: case 0x1fffe800: case 0xff1f00e8: if (CheckDts(buffer, buffer_size)) return CONTAINER_DTS; break; case 0xb7d80020: if (StartsWith(buffer, buffer_size, kWtvSignature, sizeof(kWtvSignature))) { return CONTAINER_WTV; } break; } // Now try a few different ones that look at something other // than the first 4 bytes. uint32 first3 = first4 & 0xffffff00; switch (first3) { case TAG('C','W','S',0): case TAG('F','W','S',0): return CONTAINER_SWF; case TAG('I','D','3',0): if (CheckMp3(buffer, buffer_size, true)) return CONTAINER_MP3; break; } // Maybe the first 2 characters are something we can use. uint32 first2 = Read16(buffer); switch (first2) { case kAc3SyncWord: if (CheckAc3(buffer, buffer_size)) return CONTAINER_AC3; if (CheckEac3(buffer, buffer_size)) return CONTAINER_EAC3; break; case 0xfff0: case 0xfff1: case 0xfff8: case 0xfff9: if (CheckAac(buffer, buffer_size)) return CONTAINER_AAC; break; } // Check if the file is in MP3 format without the header. if (CheckMp3(buffer, buffer_size, false)) return CONTAINER_MP3; return CONTAINER_UNKNOWN; } // Attempt to determine the container name from the buffer provided. MediaContainerName DetermineContainer(const uint8* buffer, int buffer_size) { DCHECK(buffer); // Since MOV/QuickTime/MPEG4 streams are common, check for them first. if (CheckMov(buffer, buffer_size)) return CONTAINER_MOV; // Next attempt the simple checks, that typically look at just the // first few bytes of the file. MediaContainerName result = LookupContainerByFirst4(buffer, buffer_size); if (result != CONTAINER_UNKNOWN) return result; // Additional checks that may scan a portion of the buffer. if (CheckMpeg2ProgramStream(buffer, buffer_size)) return CONTAINER_MPEG2PS; if (CheckMpeg2TransportStream(buffer, buffer_size)) return CONTAINER_MPEG2TS; if (CheckMJpeg(buffer, buffer_size)) return CONTAINER_MJPEG; if (CheckDV(buffer, buffer_size)) return CONTAINER_DV; if (CheckH261(buffer, buffer_size)) return CONTAINER_H261; if (CheckH263(buffer, buffer_size)) return CONTAINER_H263; if (CheckH264(buffer, buffer_size)) return CONTAINER_H264; if (CheckMpeg4BitStream(buffer, buffer_size)) return CONTAINER_MPEG4BS; if (CheckVC1(buffer, buffer_size)) return CONTAINER_VC1; if (CheckSrt(buffer, buffer_size)) return CONTAINER_SRT; if (CheckGsm(buffer, buffer_size)) return CONTAINER_GSM; // AC3/EAC3 might not start at the beginning of the stream, // so scan for a start code. int offset = 1; // No need to start at byte 0 due to First4 check. if (AdvanceToStartCode(buffer, buffer_size, &offset, 4, 16, kAc3SyncWord)) { if (CheckAc3(buffer + offset, buffer_size - offset)) return CONTAINER_AC3; if (CheckEac3(buffer + offset, buffer_size - offset)) return CONTAINER_EAC3; } return CONTAINER_UNKNOWN; } } // namespace container_names } // namespace media