/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" * * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to * endorse or promote products derived from this software without * prior written permission. For written permission, please contact * openssl-core@openssl.org. * * 5. Products derived from this software may not be called "OpenSSL" * nor may "OpenSSL" appear in their names without prior written * permission of the OpenSSL Project. * * 6. Redistributions of any form whatsoever must retain the following * acknowledgment: * "This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit (http://www.openssl.org/)" * * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * ==================================================================== * * This product includes cryptographic software written by Eric Young * (eay@cryptsoft.com). This product includes software written by Tim * Hudson (tjh@cryptsoft.com). * */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * ECC cipher suite support in OpenSSL originally developed by * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */ /* ==================================================================== * Copyright 2005 Nokia. All rights reserved. * * The portions of the attached software ("Contribution") is developed by * Nokia Corporation and is licensed pursuant to the OpenSSL open source * license. * * The Contribution, originally written by Mika Kousa and Pasi Eronen of * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites * support (see RFC 4279) to OpenSSL. * * No patent licenses or other rights except those expressly stated in * the OpenSSL open source license shall be deemed granted or received * expressly, by implication, estoppel, or otherwise. * * No assurances are provided by Nokia that the Contribution does not * infringe the patent or other intellectual property rights of any third * party or that the license provides you with all the necessary rights * to make use of the Contribution. * * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR * OTHERWISE. */ #include #include #include #include #include #include "ssl_locl.h" #define SSL_ENC_3DES_IDX 0 #define SSL_ENC_RC4_IDX 1 #define SSL_ENC_AES128_IDX 2 #define SSL_ENC_AES256_IDX 3 #define SSL_ENC_NUM_IDX 4 static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]= { 0 }; #define SSL_MD_MD5_IDX 0 #define SSL_MD_SHA1_IDX 1 #define SSL_MD_SHA256_IDX 2 #define SSL_MD_SHA384_IDX 3 /*Constant SSL_MAX_DIGEST equal to size of digests array should be * defined in the * ssl_locl.h */ #define SSL_MD_NUM_IDX SSL_MAX_DIGEST static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX] = { 0 }; static const int ssl_mac_pkey_id[SSL_MD_NUM_IDX]={ EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, EVP_PKEY_HMAC, }; static int ssl_mac_secret_size[SSL_MD_NUM_IDX] = { 0 }; static const int ssl_handshake_digest_flag[SSL_MD_NUM_IDX]={ SSL_HANDSHAKE_MAC_MD5, SSL_HANDSHAKE_MAC_SHA, SSL_HANDSHAKE_MAC_SHA256, SSL_HANDSHAKE_MAC_SHA384, }; #define CIPHER_ADD 1 #define CIPHER_KILL 2 #define CIPHER_DEL 3 #define CIPHER_ORD 4 #define CIPHER_SPECIAL 5 typedef struct cipher_order_st { const SSL_CIPHER *cipher; int active; int dead; int in_group; struct cipher_order_st *next,*prev; } CIPHER_ORDER; static const SSL_CIPHER cipher_aliases[]={ {0,SSL_TXT_ALL,0, 0,0,0,0,0,0,0,0,0}, /* "COMPLEMENTOFDEFAULT" (does *not* include ciphersuites not found in ALL!) */ {0,SSL_TXT_CMPDEF,0, SSL_kEDH|SSL_kEECDH,SSL_aNULL,0,0,0,0,0,0,0}, /* key exchange aliases * (some of those using only a single bit here combine * multiple key exchange algs according to the RFCs, * e.g. kEDH combines DHE_DSS and DHE_RSA) */ {0,SSL_TXT_kRSA,0, SSL_kRSA, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_kEDH,0, SSL_kEDH, 0,0,0,0,0,0,0,0}, {0,SSL_TXT_DH,0, SSL_kEDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kEECDH,0, SSL_kEECDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_ECDH,0, SSL_kEECDH,0,0,0,0,0,0,0,0}, {0,SSL_TXT_kPSK,0, SSL_kPSK, 0,0,0,0,0,0,0,0}, /* server authentication aliases */ {0,SSL_TXT_aRSA,0, 0,SSL_aRSA, 0,0,0,0,0,0,0}, {0,SSL_TXT_aNULL,0, 0,SSL_aNULL, 0,0,0,0,0,0,0}, {0,SSL_TXT_aECDSA,0, 0,SSL_aECDSA,0,0,0,0,0,0,0}, {0,SSL_TXT_ECDSA,0, 0,SSL_aECDSA, 0,0,0,0,0,0,0}, {0,SSL_TXT_aPSK,0, 0,SSL_aPSK, 0,0,0,0,0,0,0}, /* aliases combining key exchange and server authentication */ {0,SSL_TXT_EDH,0, SSL_kEDH,~SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_EECDH,0, SSL_kEECDH,~SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_RSA,0, SSL_kRSA,SSL_aRSA,0,0,0,0,0,0,0}, {0,SSL_TXT_ADH,0, SSL_kEDH,SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_AECDH,0, SSL_kEECDH,SSL_aNULL,0,0,0,0,0,0,0}, {0,SSL_TXT_PSK,0, SSL_kPSK,SSL_aPSK,0,0,0,0,0,0,0}, /* symmetric encryption aliases */ {0,SSL_TXT_3DES,0, 0,0,SSL_3DES, 0,0,0,0,0,0}, {0,SSL_TXT_RC4,0, 0,0,SSL_RC4, 0,0,0,0,0,0}, {0,SSL_TXT_AES128,0, 0,0,SSL_AES128|SSL_AES128GCM,0,0,0,0,0,0}, {0,SSL_TXT_AES256,0, 0,0,SSL_AES256|SSL_AES256GCM,0,0,0,0,0,0}, {0,SSL_TXT_AES,0, 0,0,SSL_AES,0,0,0,0,0,0}, {0,SSL_TXT_AES_GCM,0, 0,0,SSL_AES128GCM|SSL_AES256GCM,0,0,0,0,0,0}, {0,SSL_TXT_CHACHA20 ,0,0,0,SSL_CHACHA20POLY1305,0,0,0,0,0,0}, /* MAC aliases */ {0,SSL_TXT_MD5,0, 0,0,0,SSL_MD5, 0,0,0,0,0}, {0,SSL_TXT_SHA1,0, 0,0,0,SSL_SHA1, 0,0,0,0,0}, {0,SSL_TXT_SHA,0, 0,0,0,SSL_SHA1, 0,0,0,0,0}, {0,SSL_TXT_SHA256,0, 0,0,0,SSL_SHA256, 0,0,0,0,0}, {0,SSL_TXT_SHA384,0, 0,0,0,SSL_SHA384, 0,0,0,0,0}, /* protocol version aliases */ {0,SSL_TXT_SSLV3,0, 0,0,0,0,SSL_SSLV3, 0,0,0,0}, {0,SSL_TXT_TLSV1,0, 0,0,0,0,SSL_TLSV1, 0,0,0,0}, {0,SSL_TXT_TLSV1_2,0, 0,0,0,0,SSL_TLSV1_2, 0,0,0,0}, /* strength classes */ {0,SSL_TXT_MEDIUM,0, 0,0,0,0,0,SSL_MEDIUM,0,0,0}, {0,SSL_TXT_HIGH,0, 0,0,0,0,0,SSL_HIGH, 0,0,0}, /* FIPS 140-2 approved ciphersuite */ {0,SSL_TXT_FIPS,0, 0,0,0,0,0,SSL_FIPS, 0,0,0}, }; void ssl_load_ciphers(void) { ssl_cipher_methods[SSL_ENC_3DES_IDX]= EVP_des_ede3_cbc(); ssl_cipher_methods[SSL_ENC_RC4_IDX]= EVP_rc4(); ssl_cipher_methods[SSL_ENC_AES128_IDX]= EVP_aes_128_cbc(); ssl_cipher_methods[SSL_ENC_AES256_IDX]= EVP_aes_256_cbc(); ssl_digest_methods[SSL_MD_MD5_IDX]= EVP_md5(); ssl_mac_secret_size[SSL_MD_MD5_IDX]= EVP_MD_size(EVP_md5()); assert(ssl_mac_secret_size[SSL_MD_MD5_IDX] >= 0); ssl_digest_methods[SSL_MD_SHA1_IDX]=EVP_sha1(); ssl_mac_secret_size[SSL_MD_SHA1_IDX]= EVP_MD_size(EVP_sha1()); assert(ssl_mac_secret_size[SSL_MD_SHA1_IDX] >= 0); ssl_digest_methods[SSL_MD_SHA256_IDX]= EVP_sha256(); ssl_mac_secret_size[SSL_MD_SHA256_IDX]= EVP_MD_size(EVP_sha256()); ssl_digest_methods[SSL_MD_SHA384_IDX]= EVP_sha384(); ssl_mac_secret_size[SSL_MD_SHA384_IDX]= EVP_MD_size(EVP_sha384()); } /* ssl_cipher_get_evp_aead sets |*aead| to point to the correct EVP_AEAD object * for |s->cipher|. It returns 1 on success and 0 on error. */ int ssl_cipher_get_evp_aead(const SSL_SESSION *s, const EVP_AEAD **aead) { const SSL_CIPHER *c = s->cipher; *aead = NULL; if (c == NULL) return 0; if ((c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) == 0 && (c->algorithm2 & SSL_CIPHER_ALGORITHM2_STATEFUL_AEAD) == 0) return 0; switch (c->algorithm_enc) { case SSL_AES128GCM: *aead = EVP_aead_aes_128_gcm(); return 1; case SSL_AES256GCM: *aead = EVP_aead_aes_256_gcm(); return 1; case SSL_CHACHA20POLY1305: *aead = EVP_aead_chacha20_poly1305(); return 1; case SSL_RC4: if (c->algorithm_mac == SSL_MD5) *aead = EVP_aead_rc4_md5_tls(); else return 0; return 1; } return 0; } int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc, const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size) { int i; const SSL_CIPHER *c; c=s->cipher; if (c == NULL) return(0); /* This function doesn't deal with EVP_AEAD. See * |ssl_cipher_get_aead_evp|. */ if (c->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD) return(0); if ((enc == NULL) || (md == NULL)) return(0); switch (c->algorithm_enc) { case SSL_3DES: i=SSL_ENC_3DES_IDX; break; case SSL_RC4: i=SSL_ENC_RC4_IDX; break; case SSL_AES128: i=SSL_ENC_AES128_IDX; break; case SSL_AES256: i=SSL_ENC_AES256_IDX; break; default: i= -1; break; } if ((i < 0) || (i >= SSL_ENC_NUM_IDX)) *enc=NULL; else *enc=ssl_cipher_methods[i]; if (!ssl_cipher_get_mac(s, md, mac_pkey_type, mac_secret_size)) return 0; if ((*enc != NULL) && (*md != NULL) && (!mac_pkey_type||*mac_pkey_type != NID_undef)) { if (s->ssl_version>>8 != TLS1_VERSION_MAJOR || s->ssl_version < TLS1_VERSION) return 1; /* TODO(fork): enable the stitched cipher modes. */ #if 0 if (c->algorithm_enc == SSL_RC4 && c->algorithm_mac == SSL_MD5 && (evp=EVP_get_cipherbyname("RC4-HMAC-MD5"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES128 && c->algorithm_mac == SSL_SHA1 && (evp=EVP_get_cipherbyname("AES-128-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; else if (c->algorithm_enc == SSL_AES256 && c->algorithm_mac == SSL_SHA1 && (evp=EVP_get_cipherbyname("AES-256-CBC-HMAC-SHA1"))) *enc = evp, *md = NULL; #endif return(1); } else return(0); } int ssl_cipher_get_mac(const SSL_SESSION *s, const EVP_MD **md, int *mac_pkey_type, int *mac_secret_size) { int i; const SSL_CIPHER *c; c=s->cipher; if (c == NULL) return(0); switch (c->algorithm_mac) { case SSL_MD5: i=SSL_MD_MD5_IDX; break; case SSL_SHA1: i=SSL_MD_SHA1_IDX; break; case SSL_SHA256: i=SSL_MD_SHA256_IDX; break; case SSL_SHA384: i=SSL_MD_SHA384_IDX; break; default: i= -1; break; } if ((i < 0) || (i >= SSL_MD_NUM_IDX)) { *md=NULL; if (mac_pkey_type!=NULL) *mac_pkey_type = NID_undef; if (mac_secret_size!=NULL) *mac_secret_size = 0; } else { *md=ssl_digest_methods[i]; if (mac_pkey_type!=NULL) *mac_pkey_type = ssl_mac_pkey_id[i]; if (mac_secret_size!=NULL) *mac_secret_size = ssl_mac_secret_size[i]; } return 1; } int ssl_get_handshake_digest(int idx, long *mask, const EVP_MD **md) { if (idx <0||idx>=SSL_MD_NUM_IDX) { return 0; } *mask = ssl_handshake_digest_flag[idx]; if (*mask) *md = ssl_digest_methods[idx]; else *md = NULL; return 1; } #define ITEM_SEP(a) \ (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *tail) return; if (curr == *head) *head=curr->next; if (curr->prev != NULL) curr->prev->next=curr->next; if (curr->next != NULL) curr->next->prev=curr->prev; (*tail)->next=curr; curr->prev= *tail; curr->next=NULL; *tail=curr; } static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, CIPHER_ORDER **tail) { if (curr == *head) return; if (curr == *tail) *tail=curr->prev; if (curr->next != NULL) curr->next->prev=curr->prev; if (curr->prev != NULL) curr->prev->next=curr->next; (*head)->prev=curr; curr->next= *head; curr->prev=NULL; *head=curr; } static void ssl_cipher_get_disabled(unsigned long *mkey, unsigned long *auth, unsigned long *enc, unsigned long *mac, unsigned long *ssl) { *mkey = 0; *auth = 0; *enc = 0; *mac = 0; *ssl = 0; *enc |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0; *enc |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0; *enc |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES128:0; *enc |= (ssl_cipher_methods[SSL_ENC_AES256_IDX] == NULL) ? SSL_AES256:0; *mac |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0; *mac |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0; *mac |= (ssl_digest_methods[SSL_MD_SHA256_IDX] == NULL) ? SSL_SHA256:0; *mac |= (ssl_digest_methods[SSL_MD_SHA384_IDX] == NULL) ? SSL_SHA384:0; } static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method, int num_of_ciphers, unsigned long disabled_mkey, unsigned long disabled_auth, unsigned long disabled_enc, unsigned long disabled_mac, unsigned long disabled_ssl, CIPHER_ORDER *co_list, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int i, co_list_num; const SSL_CIPHER *c; /* * We have num_of_ciphers descriptions compiled in, depending on the * method selected (SSLv2 and/or SSLv3, TLSv1 etc). * These will later be sorted in a linked list with at most num * entries. */ /* Get the initial list of ciphers */ co_list_num = 0; /* actual count of ciphers */ for (i = 0; i < num_of_ciphers; i++) { c = ssl_method->get_cipher(i); /* drop those that use any of that is not available */ if ((c != NULL) && c->valid && !(c->algorithm_mkey & disabled_mkey) && !(c->algorithm_auth & disabled_auth) && !(c->algorithm_enc & disabled_enc) && !(c->algorithm_mac & disabled_mac) && !(c->algorithm_ssl & disabled_ssl)) { co_list[co_list_num].cipher = c; co_list[co_list_num].next = NULL; co_list[co_list_num].prev = NULL; co_list[co_list_num].active = 0; co_list[co_list_num].in_group = 0; co_list_num++; #ifdef KSSL_DEBUG printf("\t%d: %s %lx %lx %lx\n",i,c->name,c->id,c->algorithm_mkey,c->algorithm_auth); #endif /* KSSL_DEBUG */ /* if (!sk_push(ca_list,(char *)c)) goto err; */ } } /* * Prepare linked list from list entries */ if (co_list_num > 0) { co_list[0].prev = NULL; if (co_list_num > 1) { co_list[0].next = &co_list[1]; for (i = 1; i < co_list_num - 1; i++) { co_list[i].prev = &co_list[i - 1]; co_list[i].next = &co_list[i + 1]; } co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; } co_list[co_list_num - 1].next = NULL; *head_p = &co_list[0]; *tail_p = &co_list[co_list_num - 1]; } } static void ssl_cipher_collect_aliases(const SSL_CIPHER **ca_list, int num_of_group_aliases, unsigned long disabled_mkey, unsigned long disabled_auth, unsigned long disabled_enc, unsigned long disabled_mac, unsigned long disabled_ssl, CIPHER_ORDER *head) { CIPHER_ORDER *ciph_curr; const SSL_CIPHER **ca_curr; int i; unsigned long mask_mkey = ~disabled_mkey; unsigned long mask_auth = ~disabled_auth; unsigned long mask_enc = ~disabled_enc; unsigned long mask_mac = ~disabled_mac; unsigned long mask_ssl = ~disabled_ssl; /* * First, add the real ciphers as already collected */ ciph_curr = head; ca_curr = ca_list; while (ciph_curr != NULL) { *ca_curr = ciph_curr->cipher; ca_curr++; ciph_curr = ciph_curr->next; } /* * Now we add the available ones from the cipher_aliases[] table. * They represent either one or more algorithms, some of which * in any affected category must be supported (set in enabled_mask), * or represent a cipher strength value (will be added in any case because algorithms=0). */ for (i = 0; i < num_of_group_aliases; i++) { unsigned long algorithm_mkey = cipher_aliases[i].algorithm_mkey; unsigned long algorithm_auth = cipher_aliases[i].algorithm_auth; unsigned long algorithm_enc = cipher_aliases[i].algorithm_enc; unsigned long algorithm_mac = cipher_aliases[i].algorithm_mac; unsigned long algorithm_ssl = cipher_aliases[i].algorithm_ssl; if (algorithm_mkey) if ((algorithm_mkey & mask_mkey) == 0) continue; if (algorithm_auth) if ((algorithm_auth & mask_auth) == 0) continue; if (algorithm_enc) if ((algorithm_enc & mask_enc) == 0) continue; if (algorithm_mac) if ((algorithm_mac & mask_mac) == 0) continue; if (algorithm_ssl) if ((algorithm_ssl & mask_ssl) == 0) continue; *ca_curr = cipher_aliases + i; ca_curr++; } *ca_curr = NULL; /* end of list */ } static void ssl_cipher_apply_rule(unsigned long cipher_id, unsigned long alg_mkey, unsigned long alg_auth, unsigned long alg_enc, unsigned long alg_mac, unsigned long alg_ssl, unsigned long algo_strength, int rule, int strength_bits, int in_group, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { CIPHER_ORDER *head, *tail, *curr, *next, *last; const SSL_CIPHER *cp; int reverse = 0; #ifdef CIPHER_DEBUG printf("Applying rule %d with %08lx/%08lx/%08lx/%08lx/%08lx %08lx (%d) in_group:%d\n", rule, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, strength_bits, in_group); #endif if (rule == CIPHER_DEL) reverse = 1; /* needed to maintain sorting between currently deleted ciphers */ head = *head_p; tail = *tail_p; if (reverse) { next = tail; last = head; } else { next = head; last = tail; } curr = NULL; for (;;) { if (curr == last) break; curr = next; if (curr == NULL) break; next = reverse ? curr->prev : curr->next; cp = curr->cipher; /* * Selection criteria is either the value of strength_bits * or the algorithms used. */ if (strength_bits >= 0) { if (strength_bits != cp->strength_bits) continue; } else { #ifdef CIPHER_DEBUG printf("\nName: %s:\nAlgo = %08lx/%08lx/%08lx/%08lx/%08lx Algo_strength = %08lx\n", cp->name, cp->algorithm_mkey, cp->algorithm_auth, cp->algorithm_enc, cp->algorithm_mac, cp->algorithm_ssl, cp->algo_strength); #endif #ifdef OPENSSL_SSL_DEBUG_BROKEN_PROTOCOL if (cipher_id && cipher_id != cp->id) continue; #endif if (alg_mkey && !(alg_mkey & cp->algorithm_mkey)) continue; if (alg_auth && !(alg_auth & cp->algorithm_auth)) continue; if (alg_enc && !(alg_enc & cp->algorithm_enc)) continue; if (alg_mac && !(alg_mac & cp->algorithm_mac)) continue; if (alg_ssl && !(alg_ssl & cp->algorithm_ssl)) continue; if ((algo_strength & SSL_EXP_MASK) && !(algo_strength & SSL_EXP_MASK & cp->algo_strength)) continue; if ((algo_strength & SSL_STRONG_MASK) && !(algo_strength & SSL_STRONG_MASK & cp->algo_strength)) continue; } #ifdef CIPHER_DEBUG printf("Action = %d\n", rule); #endif /* add the cipher if it has not been added yet. */ if (rule == CIPHER_ADD) { /* reverse == 0 */ if (!curr->active) { ll_append_tail(&head, curr, &tail); curr->active = 1; curr->in_group = in_group; } } /* Move the added cipher to this location */ else if (rule == CIPHER_ORD) { /* reverse == 0 */ if (curr->active) { ll_append_tail(&head, curr, &tail); curr->in_group = 0; } } else if (rule == CIPHER_DEL) { /* reverse == 1 */ if (curr->active) { /* most recently deleted ciphersuites get best positions * for any future CIPHER_ADD (note that the CIPHER_DEL loop * works in reverse to maintain the order) */ ll_append_head(&head, curr, &tail); curr->active = 0; curr->in_group = 0; } } else if (rule == CIPHER_KILL) { /* reverse == 0 */ if (head == curr) head = curr->next; else curr->prev->next = curr->next; if (tail == curr) tail = curr->prev; curr->active = 0; if (curr->next != NULL) curr->next->prev = curr->prev; if (curr->prev != NULL) curr->prev->next = curr->next; curr->next = NULL; curr->prev = NULL; } } *head_p = head; *tail_p = tail; } static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p) { int max_strength_bits, i, *number_uses; CIPHER_ORDER *curr; /* * This routine sorts the ciphers with descending strength. The sorting * must keep the pre-sorted sequence, so we apply the normal sorting * routine as '+' movement to the end of the list. */ max_strength_bits = 0; curr = *head_p; while (curr != NULL) { if (curr->active && (curr->cipher->strength_bits > max_strength_bits)) max_strength_bits = curr->cipher->strength_bits; curr = curr->next; } number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); if (!number_uses) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_strength_sort, ERR_R_MALLOC_FAILURE); return(0); } memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); /* * Now find the strength_bits values actually used */ curr = *head_p; while (curr != NULL) { if (curr->active) number_uses[curr->cipher->strength_bits]++; curr = curr->next; } /* * Go through the list of used strength_bits values in descending * order. */ for (i = max_strength_bits; i >= 0; i--) if (number_uses[i] > 0) ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p); OPENSSL_free(number_uses); return(1); } static int ssl_cipher_process_rulestr(const char *rule_str, CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p, const SSL_CIPHER **ca_list) { unsigned long alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength; const char *l, *buf; int j, multi, found, rule, retval, ok, buflen, in_group = 0, has_group = 0; unsigned long cipher_id = 0; char ch; retval = 1; l = rule_str; for (;;) { ch = *l; if (ch == '\0') break; /* done */ if (in_group) { if (ch == ']') { if (!in_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_UNEXPECTED_GROUP_CLOSE); retval = found = in_group = 0; break; } if (*tail_p) (*tail_p)->in_group = 0; in_group = 0; l++; continue; } if (ch == '|') { rule = CIPHER_ADD; l++; continue; } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') && !(ch >= '0' && ch <= '9')) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP); retval = found = in_group = 0; break; } else rule = CIPHER_ADD; } else if (ch == '-') { rule = CIPHER_DEL; l++; } else if (ch == '+') { rule = CIPHER_ORD; l++; } else if (ch == '!' && has_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); retval = found = in_group = 0; break; } else if (ch == '!') { rule = CIPHER_KILL; l++; } else if (ch == '@' && has_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); retval = found = in_group = 0; break; } else if (ch == '@') { rule = CIPHER_SPECIAL; l++; } else if (ch == '[') { if (in_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_NESTED_GROUP); retval = found = in_group = 0; break; } in_group = 1; has_group = 1; l++; continue; } else { rule = CIPHER_ADD; } if (ITEM_SEP(ch)) { l++; continue; } alg_mkey = 0; alg_auth = 0; alg_enc = 0; alg_mac = 0; alg_ssl = 0; algo_strength = 0; for (;;) { ch = *l; buf = l; buflen = 0; while ( ((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) { ch = *(++l); buflen++; } if (buflen == 0) { /* * We hit something we cannot deal with, * it is no command or separator nor * alphanumeric, so we call this an error. */ OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_INVALID_COMMAND); retval = found = in_group = 0; l++; break; } if (rule == CIPHER_SPECIAL) { found = 0; /* unused -- avoid compiler warning */ break; /* special treatment */ } /* check for multi-part specification */ if (ch == '+') { multi=1; l++; } else multi=0; /* * Now search for the cipher alias in the ca_list. Be careful * with the strncmp, because the "buflen" limitation * will make the rule "ADH:SOME" and the cipher * "ADH-MY-CIPHER" look like a match for buflen=3. * So additionally check whether the cipher name found * has the correct length. We can save a strlen() call: * just checking for the '\0' at the right place is * sufficient, we have to strncmp() anyway. (We cannot * use strcmp(), because buf is not '\0' terminated.) */ j = found = 0; cipher_id = 0; while (ca_list[j]) { if (!strncmp(buf, ca_list[j]->name, buflen) && (ca_list[j]->name[buflen] == '\0')) { found = 1; break; } else j++; } if (!found) break; /* ignore this entry */ if (ca_list[j]->algorithm_mkey) { if (alg_mkey) { alg_mkey &= ca_list[j]->algorithm_mkey; if (!alg_mkey) { found = 0; break; } } else alg_mkey = ca_list[j]->algorithm_mkey; } if (ca_list[j]->algorithm_auth) { if (alg_auth) { alg_auth &= ca_list[j]->algorithm_auth; if (!alg_auth) { found = 0; break; } } else alg_auth = ca_list[j]->algorithm_auth; } if (ca_list[j]->algorithm_enc) { if (alg_enc) { alg_enc &= ca_list[j]->algorithm_enc; if (!alg_enc) { found = 0; break; } } else alg_enc = ca_list[j]->algorithm_enc; } if (ca_list[j]->algorithm_mac) { if (alg_mac) { alg_mac &= ca_list[j]->algorithm_mac; if (!alg_mac) { found = 0; break; } } else alg_mac = ca_list[j]->algorithm_mac; } if (ca_list[j]->algo_strength & SSL_EXP_MASK) { if (algo_strength & SSL_EXP_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_EXP_MASK) | ~SSL_EXP_MASK; if (!(algo_strength & SSL_EXP_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_EXP_MASK; } if (ca_list[j]->algo_strength & SSL_STRONG_MASK) { if (algo_strength & SSL_STRONG_MASK) { algo_strength &= (ca_list[j]->algo_strength & SSL_STRONG_MASK) | ~SSL_STRONG_MASK; if (!(algo_strength & SSL_STRONG_MASK)) { found = 0; break; } } else algo_strength |= ca_list[j]->algo_strength & SSL_STRONG_MASK; } if (ca_list[j]->valid) { /* explicit ciphersuite found; its protocol version * does not become part of the search pattern!*/ cipher_id = ca_list[j]->id; } else { /* not an explicit ciphersuite; only in this case, the * protocol version is considered part of the search pattern */ if (ca_list[j]->algorithm_ssl) { if (alg_ssl) { alg_ssl &= ca_list[j]->algorithm_ssl; if (!alg_ssl) { found = 0; break; } } else alg_ssl = ca_list[j]->algorithm_ssl; } } if (!multi) break; } /* * Ok, we have the rule, now apply it */ if (rule == CIPHER_SPECIAL) { /* special command */ ok = 0; if ((buflen == 8) && !strncmp(buf, "STRENGTH", 8)) ok = ssl_cipher_strength_sort(head_p, tail_p); else OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_INVALID_COMMAND); if (ok == 0) retval = 0; /* * We do not support any "multi" options * together with "@", so throw away the * rest of the command, if any left, until * end or ':' is found. */ while ((*l != '\0') && !ITEM_SEP(*l)) l++; } else if (found) { ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, alg_ssl, algo_strength, rule, -1, in_group, head_p, tail_p); } else { while ((*l != '\0') && !ITEM_SEP(*l)) l++; } if (*l == '\0') break; /* done */ } if (in_group) { OPENSSL_PUT_ERROR(SSL, ssl_cipher_process_rulestr, SSL_R_INVALID_COMMAND); retval = 0; } return(retval); } STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method, struct ssl_cipher_preference_list_st **cipher_list, STACK_OF(SSL_CIPHER) **cipher_list_by_id, const char *rule_str, CERT *c) { int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases; unsigned long disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl; STACK_OF(SSL_CIPHER) *cipherstack = NULL, *tmp_cipher_list = NULL; const char *rule_p; CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; const SSL_CIPHER **ca_list = NULL; unsigned char *in_group_flags = NULL; unsigned int num_in_group_flags = 0; struct ssl_cipher_preference_list_st *pref_list = NULL; /* * Return with error if nothing to do. */ if (rule_str == NULL || cipher_list == NULL) return NULL; /* * To reduce the work to do we only want to process the compiled * in algorithms, so we first get the mask of disabled ciphers. */ ssl_cipher_get_disabled(&disabled_mkey, &disabled_auth, &disabled_enc, &disabled_mac, &disabled_ssl); /* * Now we have to collect the available ciphers from the compiled * in ciphers. We cannot get more than the number compiled in, so * it is used for allocation. */ num_of_ciphers = ssl_method->num_ciphers(); #ifdef KSSL_DEBUG printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers); #endif /* KSSL_DEBUG */ co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers); if (co_list == NULL) { OPENSSL_PUT_ERROR(SSL, ssl_create_cipher_list, ERR_R_MALLOC_FAILURE); return(NULL); /* Failure */ } ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, co_list, &head, &tail); /* Now arrange all ciphers by preference: * TODO(davidben): Compute this order once and copy it. */ /* Everything else being equal, prefer ephemeral ECDH over other key exchange mechanisms */ ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, SSL_kEECDH, 0, 0, 0, 0, 0, CIPHER_DEL, -1, 0, &head, &tail); /* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer * CHACHA20 unless there is hardware support for fast and constant-time * AES_GCM. */ if (EVP_has_aes_hardware()) { ssl_cipher_apply_rule(0, 0, 0, SSL_AES256GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES128GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); } else { ssl_cipher_apply_rule(0, 0, 0, SSL_CHACHA20POLY1305, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES256GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES128GCM, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); } /* Then the legacy non-AEAD ciphers: AES_256_CBC, AES-128_CBC, * RC4_128_SHA, RC4_128_MD5, 3DES_EDE_CBC_SHA. */ ssl_cipher_apply_rule(0, 0, 0, SSL_AES256, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_AES128, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, ~SSL_MD5, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_RC4, SSL_MD5, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); ssl_cipher_apply_rule(0, 0, 0, SSL_3DES, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); /* Temporarily enable everything else for sorting */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_ADD, -1, 0, &head, &tail); /* Move ciphers without forward secrecy to the end. */ ssl_cipher_apply_rule(0, ~(SSL_kEDH|SSL_kEECDH), 0, 0, 0, 0, 0, CIPHER_ORD, -1, 0, &head, &tail); /* Move anonymous ciphers to the end. Usually, these will remain disabled. * (For applications that allow them, they aren't too bad, but we prefer * authenticated ciphers.) * TODO(davidben): Remove them altogether? */ ssl_cipher_apply_rule(0, 0, SSL_aNULL, 0, 0, 0, 0, CIPHER_ORD, -1, 0, &head, &tail); /* Now disable everything (maintaining the ordering!) */ ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, 0, CIPHER_DEL, -1, 0, &head, &tail); /* * We also need cipher aliases for selecting based on the rule_str. * There might be two types of entries in the rule_str: 1) names * of ciphers themselves 2) aliases for groups of ciphers. * For 1) we need the available ciphers and for 2) the cipher * groups of cipher_aliases added together in one list (otherwise * we would be happy with just the cipher_aliases table). */ num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER); num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1; ca_list = OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max); if (ca_list == NULL) { OPENSSL_free(co_list); OPENSSL_PUT_ERROR(SSL, ssl_create_cipher_list, ERR_R_MALLOC_FAILURE); return(NULL); /* Failure */ } ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mkey, disabled_auth, disabled_enc, disabled_mac, disabled_ssl, head); /* * If the rule_string begins with DEFAULT, apply the default rule * before using the (possibly available) additional rules. */ ok = 1; rule_p = rule_str; if (strncmp(rule_str,"DEFAULT",7) == 0) { ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail, ca_list); rule_p += 7; if (*rule_p == ':') rule_p++; } if (ok && (strlen(rule_p) > 0)) ok = ssl_cipher_process_rulestr(rule_p, &head, &tail, ca_list); OPENSSL_free((void *)ca_list); /* Not needed anymore */ if (!ok) goto err; /* * Allocate new "cipherstack" for the result, return with error * if we cannot get one. */ if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL) goto err; in_group_flags = OPENSSL_malloc(num_of_ciphers); if (!in_group_flags) goto err; /* * The cipher selection for the list is done. The ciphers are added * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ for (curr = head; curr != NULL; curr = curr->next) { if (curr->active) { sk_SSL_CIPHER_push(cipherstack, curr->cipher); in_group_flags[num_in_group_flags++] = curr->in_group; #ifdef CIPHER_DEBUG printf("<%s>\n",curr->cipher->name); #endif } } OPENSSL_free(co_list); /* Not needed any longer */ co_list = NULL; tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack); if (tmp_cipher_list == NULL) goto err; pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st)); if (!pref_list) goto err; pref_list->ciphers = cipherstack; pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags); if (!pref_list->in_group_flags) goto err; memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags); OPENSSL_free(in_group_flags); in_group_flags = NULL; if (*cipher_list != NULL) ssl_cipher_preference_list_free(*cipher_list); *cipher_list = pref_list; pref_list = NULL; if (cipher_list_by_id != NULL) { if (*cipher_list_by_id != NULL) sk_SSL_CIPHER_free(*cipher_list_by_id); *cipher_list_by_id = tmp_cipher_list; tmp_cipher_list = NULL; (void)sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp); sk_SSL_CIPHER_sort(*cipher_list_by_id); } else { sk_SSL_CIPHER_free(tmp_cipher_list); tmp_cipher_list = NULL; } return(cipherstack); err: if (co_list) OPENSSL_free(co_list); if (in_group_flags) OPENSSL_free(in_group_flags); if (cipherstack) sk_SSL_CIPHER_free(cipherstack); if (tmp_cipher_list) sk_SSL_CIPHER_free(tmp_cipher_list); if (pref_list && pref_list->in_group_flags) OPENSSL_free(pref_list->in_group_flags); if (pref_list) OPENSSL_free(pref_list); return NULL; } const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, int len) { const char *ver; const char *kx,*au,*enc,*mac; unsigned long alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl; #ifdef KSSL_DEBUG static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s AL=%lx/%lx/%lx/%lx/%lx\n"; #else static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n"; #endif /* KSSL_DEBUG */ alg_mkey = cipher->algorithm_mkey; alg_auth = cipher->algorithm_auth; alg_enc = cipher->algorithm_enc; alg_mac = cipher->algorithm_mac; alg_ssl = cipher->algorithm_ssl; if (alg_ssl & SSL_SSLV3) ver="SSLv3"; else if (alg_ssl & SSL_TLSV1_2) ver="TLSv1.2"; else ver="unknown"; switch (alg_mkey) { case SSL_kRSA: kx="RSA"; break; case SSL_kEDH: kx="DH"; break; case SSL_kEECDH: kx="ECDH"; break; case SSL_kPSK: kx="PSK"; break; default: kx="unknown"; } switch (alg_auth) { case SSL_aRSA: au="RSA"; break; case SSL_aNULL: au="None"; break; case SSL_aECDSA: au="ECDSA"; break; case SSL_aPSK: au="PSK"; break; default: au="unknown"; break; } switch (alg_enc) { case SSL_3DES: enc="3DES(168)"; break; case SSL_RC4: enc="RC4(128)"; break; case SSL_AES128: enc="AES(128)"; break; case SSL_AES256: enc="AES(256)"; break; case SSL_AES128GCM: enc="AESGCM(128)"; break; case SSL_AES256GCM: enc="AESGCM(256)"; break; case SSL_CHACHA20POLY1305: enc="ChaCha20-Poly1305"; break; default: enc="unknown"; break; } switch (alg_mac) { case SSL_MD5: mac="MD5"; break; case SSL_SHA1: mac="SHA1"; break; case SSL_SHA256: mac="SHA256"; break; case SSL_SHA384: mac="SHA384"; break; case SSL_AEAD: mac="AEAD"; break; default: mac="unknown"; break; } if (buf == NULL) { len=128; buf=OPENSSL_malloc(len); if (buf == NULL) return("OPENSSL_malloc Error"); } else if (len < 128) return("Buffer too small"); #ifdef KSSL_DEBUG BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,alg_mkey,alg_auth,alg_enc,alg_mac,alg_ssl); #else BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac); #endif /* KSSL_DEBUG */ return(buf); } /* Next three functions require non-null cipher */ int SSL_CIPHER_is_AES(const SSL_CIPHER *c) { return (c->algorithm_enc & SSL_AES) != 0; } int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *c) { return (c->algorithm_mac & SSL_MD5) != 0; } int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *c) { return (c->algorithm_mac & (SSL_AES128GCM|SSL_AES256GCM)) != 0; } int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *c) { return (c->algorithm_enc & SSL_CHACHA20POLY1305) != 0; } const char *SSL_CIPHER_get_version(const SSL_CIPHER *c) { int i; if (c == NULL) return("(NONE)"); i=(int)(c->id>>24L); if (i == 3) return("TLSv1/SSLv3"); else if (i == 2) return("SSLv2"); else return("unknown"); } /* return the actual cipher being used */ const char *SSL_CIPHER_get_name(const SSL_CIPHER *c) { if (c != NULL) return(c->name); return("(NONE)"); } const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) { if (cipher == NULL) { return ""; } switch (cipher->algorithm_mkey) { case SSL_kRSA: return SSL_TXT_RSA; case SSL_kEDH: switch (cipher->algorithm_auth) { case SSL_aRSA: return "DHE_" SSL_TXT_RSA; case SSL_aNULL: return SSL_TXT_DH "_anon"; default: return "UNKNOWN"; } case SSL_kEECDH: switch (cipher->algorithm_auth) { case SSL_aECDSA: return "ECDHE_" SSL_TXT_ECDSA; case SSL_aRSA: return "ECDHE_" SSL_TXT_RSA; case SSL_aNULL: return SSL_TXT_ECDH "_anon"; default: return "UNKNOWN"; } default: return "UNKNOWN"; } } /* number of bits for symmetric cipher */ int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits) { int ret=0; if (c != NULL) { if (alg_bits != NULL) *alg_bits = c->alg_bits; ret = c->strength_bits; } return(ret); } unsigned long SSL_CIPHER_get_id(const SSL_CIPHER *c) { return c->id; } void *SSL_COMP_get_compression_methods(void) { return NULL; } int SSL_COMP_add_compression_method(int id, void *cm) { return 1; } const char *SSL_COMP_get_name(const void *comp) { return NULL; } /* For a cipher return the index corresponding to the certificate type */ int ssl_cipher_get_cert_index(const SSL_CIPHER *c) { unsigned long alg_a = c->algorithm_auth; if (alg_a & SSL_aECDSA) return SSL_PKEY_ECC; else if (alg_a & SSL_aRSA) return SSL_PKEY_RSA_ENC; return -1; } /* ssl_cipher_has_server_public_key returns 1 if |cipher| involves a * server public key in the key exchange, sent in a server Certificate * message. Otherwise it returns 0. */ int ssl_cipher_has_server_public_key(const SSL_CIPHER *cipher) { /* Anonymous ciphers do not include a server certificate. */ if (cipher->algorithm_auth & SSL_aNULL) return 0; /* Neither do PSK ciphers, except for RSA_PSK. */ if ((cipher->algorithm_auth & SSL_aPSK) && !(cipher->algorithm_mkey & SSL_kRSA)) return 0; /* All other ciphers include it. */ return 1; } /* ssl_cipher_requires_server_key_exchange returns 1 if |cipher| * requires a ServerKeyExchange message. Otherwise it returns 0. * * Unlike ssl_cipher_has_server_public_key, some ciphers take optional * ServerKeyExchanges. PSK and RSA_PSK only use the ServerKeyExchange * to communicate a psk_identity_hint, so it is optional. * * Also, as implemented, the RSA key exchange takes an optional * ServerKeyExchange containing a signed ephemeral RSA encryption key. * * TODO(davidben): Can we remove the RSA one? This is a remnant of * RSA_EXPORT ciphers which required this (it was used to generate an * ephemeral 512-bit RSA encryption key), but it's allowed for all RSA * ciphers. */ int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) { /* Ephemeral Diffie-Hellman key exchanges require a * ServerKeyExchange. */ if (cipher->algorithm_mkey & SSL_kEDH || cipher->algorithm_mkey & SSL_kEECDH) return 1; /* It is optional in all others. */ return 0; }