aboutsummaryrefslogtreecommitdiff
path: root/brotli/enc/hash.h
blob: bc3e1c4cf585175724a8bb3d5e25457263e6bccf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.

#ifndef BROTLI_ENC_HASH_H_
#define BROTLI_ENC_HASH_H_

#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <cstdlib>
#include <memory>
#include <string>

#include "./transform.h"
#include "./fast_log.h"
#include "./find_match_length.h"
#include "./port.h"
#include "./static_dict.h"

namespace brotli {

// kHashMul32 multiplier has these properties:
// * The multiplier must be odd. Otherwise we may lose the highest bit.
// * No long streaks of 1s or 0s.
// * There is no effort to ensure that it is a prime, the oddity is enough
//   for this use.
// * The number has been tuned heuristically against compression benchmarks.
static const uint32_t kHashMul32 = 0x1e35a7bd;

template<int kShiftBits, int kMinLength>
inline uint32_t Hash(const uint8_t *data) {
  if (kMinLength <= 3) {
    // If kMinLength is 2 or 3, we hash the first 3 bytes of data.
    uint32_t h = (BROTLI_UNALIGNED_LOAD32(data) & 0xffffff) * kHashMul32;
    // The higher bits contain more mixture from the multiplication,
    // so we take our results from there.
    return h >> (32 - kShiftBits);
  } else {
    // If kMinLength is at least 4, we hash the first 4 bytes of data.
    uint32_t h = BROTLI_UNALIGNED_LOAD32(data) * kHashMul32;
    // The higher bits contain more mixture from the multiplication,
    // so we take our results from there.
    return h >> (32 - kShiftBits);
  }
}

// Usually, we always choose the longest backward reference. This function
// allows for the exception of that rule.
//
// If we choose a backward reference that is further away, it will
// usually be coded with more bits. We approximate this by assuming
// log2(distance). If the distance can be expressed in terms of the
// last four distances, we use some heuristic constants to estimate
// the bits cost. For the first up to four literals we use the bit
// cost of the literals from the literal cost model, after that we
// use the average bit cost of the cost model.
//
// This function is used to sometimes discard a longer backward reference
// when it is not much longer and the bit cost for encoding it is more
// than the saved literals.
inline double BackwardReferenceScore(double average_cost,
                                     double start_cost4,
                                     double start_cost3,
                                     double start_cost2,
                                     int copy_length,
                                     int backward_reference_offset) {
  double retval = 0;
  switch (copy_length) {
    case 2: retval = start_cost2; break;
    case 3: retval = start_cost3; break;
    default: retval = start_cost4 + (copy_length - 4) * average_cost; break;
  }
  retval -= 1.20 * Log2Floor(backward_reference_offset);
  return retval;
}

inline double BackwardReferenceScoreUsingLastDistance(double average_cost,
                                                      double start_cost4,
                                                      double start_cost3,
                                                      double start_cost2,
                                                      int copy_length,
                                                      int distance_short_code) {
  double retval = 0;
  switch (copy_length) {
    case 2: retval = start_cost2; break;
    case 3: retval = start_cost3; break;
    default: retval = start_cost4 + (copy_length - 4) * average_cost; break;
  }
  static const double kDistanceShortCodeBitCost[16] = {
    -0.6, 0.95, 1.17, 1.27,
    0.93, 0.93, 0.96, 0.96, 0.99, 0.99,
    1.05, 1.05, 1.15, 1.15, 1.25, 1.25
  };
  retval -= kDistanceShortCodeBitCost[distance_short_code];
  return retval;
}

// A (forgetful) hash table to the data seen by the compressor, to
// help create backward references to previous data.
//
// This is a hash map of fixed size (kBucketSize) to a ring buffer of
// fixed size (kBlockSize). The ring buffer contains the last kBlockSize
// index positions of the given hash key in the compressed data.
template <int kBucketBits, int kBlockBits, int kMinLength>
class HashLongestMatch {
 public:
  HashLongestMatch()
      : last_distance1_(4),
        last_distance2_(11),
        last_distance3_(15),
        last_distance4_(16),
        insert_length_(0),
        average_cost_(5.4),
        static_dict_(NULL) {
    Reset();
  }
  void Reset() {
    std::fill(&num_[0], &num_[sizeof(num_) / sizeof(num_[0])], 0);
  }
  void SetStaticDictionary(const StaticDictionary *dict) {
    static_dict_ = dict;
  }
  bool HasStaticDictionary() const {
    return static_dict_ != NULL;
  }

  // Look at 3 bytes at data.
  // Compute a hash from these, and store the value of ix at that position.
  inline void Store(const uint8_t *data, const int ix) {
    const uint32_t key = Hash<kBucketBits, kMinLength>(data);
    const int minor_ix = num_[key] & kBlockMask;
    buckets_[key][minor_ix] = ix;
    ++num_[key];
  }

  // Store hashes for a range of data.
  void StoreHashes(const uint8_t *data, size_t len, int startix, int mask) {
    for (int p = 0; p < len; ++p) {
      Store(&data[p & mask], startix + p);
    }
  }

  // Find a longest backward match of &data[cur_ix] up to the length of
  // max_length.
  //
  // Does not look for matches longer than max_length.
  // Does not look for matches further away than max_backward.
  // Writes the best found match length into best_len_out.
  // Writes the index (&data[index]) offset from the start of the best match
  // into best_distance_out.
  // Write the score of the best match into best_score_out.
  bool FindLongestMatch(const uint8_t * __restrict data,
                        const float * __restrict literal_cost,
                        const size_t ring_buffer_mask,
                        const uint32_t cur_ix,
                        uint32_t max_length,
                        const uint32_t max_backward,
                        size_t * __restrict best_len_out,
                        size_t * __restrict best_len_code_out,
                        size_t * __restrict best_distance_out,
                        double * __restrict best_score_out,
                        bool * __restrict in_dictionary) {
    *in_dictionary = true;
    *best_len_code_out = 0;
    const size_t cur_ix_masked = cur_ix & ring_buffer_mask;
    const double start_cost4 = literal_cost == NULL ? 20 :
        literal_cost[cur_ix_masked] +
        literal_cost[(cur_ix + 1) & ring_buffer_mask] +
        literal_cost[(cur_ix + 2) & ring_buffer_mask] +
        literal_cost[(cur_ix + 3) & ring_buffer_mask];
    const double start_cost3 = literal_cost == NULL ? 15 :
        literal_cost[cur_ix_masked] +
        literal_cost[(cur_ix + 1) & ring_buffer_mask] +
        literal_cost[(cur_ix + 2) & ring_buffer_mask] + 0.3;
    double start_cost2 = literal_cost == NULL ? 10 :
        literal_cost[cur_ix_masked] +
        literal_cost[(cur_ix + 1) & ring_buffer_mask] + 1.2;
    bool match_found = false;
    // Don't accept a short copy from far away.
    double best_score = 8.115;
    if (insert_length_ < 4) {
      double cost_diff[4] = { 0.10, 0.04, 0.02, 0.01 };
      best_score += cost_diff[insert_length_];
    }
    size_t best_len = *best_len_out;
    *best_len_out = 0;
    size_t best_ix = 1;
    // Try last distance first.
    for (int i = 0; i < 16; ++i) {
      size_t prev_ix = cur_ix;
      switch(i) {
        case 0: prev_ix -= last_distance1_; break;
        case 1: prev_ix -= last_distance2_; break;
        case 2: prev_ix -= last_distance3_; break;
        case 3: prev_ix -= last_distance4_; break;

        case 4: prev_ix -= last_distance1_ - 1; break;
        case 5: prev_ix -= last_distance1_ + 1; break;
        case 6: prev_ix -= last_distance1_ - 2; break;
        case 7: prev_ix -= last_distance1_ + 2; break;
        case 8: prev_ix -= last_distance1_ - 3; break;
        case 9: prev_ix -= last_distance1_ + 3; break;

        case 10: prev_ix -= last_distance2_ - 1; break;
        case 11: prev_ix -= last_distance2_ + 1; break;
        case 12: prev_ix -= last_distance2_ - 2; break;
        case 13: prev_ix -= last_distance2_ + 2; break;
        case 14: prev_ix -= last_distance2_ - 3; break;
        case 15: prev_ix -= last_distance2_ + 3; break;
      }
      if (prev_ix >= cur_ix) {
        continue;
      }
      const size_t backward = cur_ix - prev_ix;
      if (PREDICT_FALSE(backward > max_backward)) {
        continue;
      }
      prev_ix &= ring_buffer_mask;
      if (cur_ix_masked + best_len > ring_buffer_mask ||
          prev_ix + best_len > ring_buffer_mask ||
          data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
        continue;
      }
      const size_t len =
          FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
                                   max_length);
      if (len >= std::max(kMinLength, 3) ||
          (kMinLength == 2 && len == 2 && i < 2)) {
        // Comparing for >= 2 does not change the semantics, but just saves for
        // a few unnecessary binary logarithms in backward reference score,
        // since we are not interested in such short matches.
        const double score = BackwardReferenceScoreUsingLastDistance(
            average_cost_,
            start_cost4,
            start_cost3,
            start_cost2,
            len, i);
        if (best_score < score) {
          best_score = score;
          best_len = len;
          best_ix = backward;
          *best_len_out = best_len;
          *best_len_code_out = best_len;
          *best_distance_out = best_ix;
          *best_score_out = best_score;
          match_found = true;
          *in_dictionary = backward > max_backward;
        }
      }
    }
    if (kMinLength == 2) {
      int stop = int(cur_ix) - 64;
      if (stop < 0) { stop = 0; }
      start_cost2 -= 1.0;
      for (int i = cur_ix - 1; i > stop; --i) {
        size_t prev_ix = i;
        const size_t backward = cur_ix - prev_ix;
        if (PREDICT_FALSE(backward > max_backward)) {
          break;
        }
        prev_ix &= ring_buffer_mask;
        if (data[cur_ix_masked] != data[prev_ix] ||
            data[cur_ix_masked + 1] != data[prev_ix + 1]) {
          continue;
        }
        int len = 2;
        const double score = start_cost2 - 2.3 * Log2Floor(backward);

        if (best_score < score) {
          best_score = score;
          best_len = len;
          best_ix = backward;
          *best_len_out = best_len;
          *best_len_code_out = best_len;
          *best_distance_out = best_ix;
          match_found = true;
        }
      }
    }
    const uint32_t key = Hash<kBucketBits, kMinLength>(&data[cur_ix_masked]);
    const int * __restrict const bucket = &buckets_[key][0];
    const int down = (num_[key] > kBlockSize) ? (num_[key] - kBlockSize) : 0;
    for (int i = num_[key] - 1; i >= down; --i) {
      int prev_ix = bucket[i & kBlockMask];
      if (prev_ix >= 0) {
        const size_t backward = cur_ix - prev_ix;
        if (PREDICT_FALSE(backward > max_backward)) {
          break;
        }
        prev_ix &= ring_buffer_mask;
        if (cur_ix_masked + best_len > ring_buffer_mask ||
            prev_ix + best_len > ring_buffer_mask ||
            data[cur_ix_masked + best_len] != data[prev_ix + best_len]) {
          continue;
        }
        const size_t len =
            FindMatchLengthWithLimit(&data[prev_ix], &data[cur_ix_masked],
                                     max_length);
        if (len >= std::max(kMinLength, 3)) {
          // Comparing for >= 3 does not change the semantics, but just saves
          // for a few unnecessary binary logarithms in backward reference
          // score, since we are not interested in such short matches.
          const double score = BackwardReferenceScore(average_cost_,
                                                      start_cost4,
                                                      start_cost3,
                                                      start_cost2,
                                                      len, backward);
          if (best_score < score) {
            best_score = score;
            best_len = len;
            best_ix = backward;
            *best_len_out = best_len;
            *best_len_code_out = best_len;
            *best_distance_out = best_ix;
            *best_score_out = best_score;
            match_found = true;
            *in_dictionary = false;
          }
        }
      }
    }
    if (static_dict_ != NULL) {
      // We decide based on first 4 bytes how many bytes to test for.
      int prefix = BROTLI_UNALIGNED_LOAD32(&data[cur_ix_masked]);
      int maxlen = static_dict_->GetLength(prefix);
      for (int len = std::min<size_t>(maxlen, max_length);
           len > best_len && len >= 4; --len) {
        std::string snippet((const char *)&data[cur_ix_masked], len);
        int copy_len_code;
        int word_id;
        if (static_dict_->Get(snippet, &copy_len_code, &word_id)) {
          const size_t backward = max_backward + word_id + 1;
          const double score = BackwardReferenceScore(average_cost_,
                                                      start_cost4,
                                                      start_cost3,
                                                      start_cost2,
                                                      len, backward);
          if (best_score < score) {
            best_score = score;
            best_len = len;
            best_ix = backward;
            *best_len_out = best_len;
            *best_len_code_out = copy_len_code;
            *best_distance_out = best_ix;
            *best_score_out = best_score;
            match_found = true;
            *in_dictionary = true;
          }
        }
      }
    }
    return match_found;
  }

  void set_last_distance(int v) {
    if (last_distance1_ != v) {
      last_distance4_ = last_distance3_;
      last_distance3_ = last_distance2_;
      last_distance2_ = last_distance1_;
      last_distance1_ = v;
    }
  }

  int last_distance() const { return last_distance1_; }

  void set_insert_length(int v) { insert_length_ = v; }

  void set_average_cost(double v) { average_cost_ = v; }

 private:
  // Number of hash buckets.
  static const uint32_t kBucketSize = 1 << kBucketBits;

  // Only kBlockSize newest backward references are kept,
  // and the older are forgotten.
  static const uint32_t kBlockSize = 1 << kBlockBits;

  // Mask for accessing entries in a block (in a ringbuffer manner).
  static const uint32_t kBlockMask = (1 << kBlockBits) - 1;

  // Number of entries in a particular bucket.
  uint16_t num_[kBucketSize];

  // Buckets containing kBlockSize of backward references.
  int buckets_[kBucketSize][kBlockSize];

  int last_distance1_;
  int last_distance2_;
  int last_distance3_;
  int last_distance4_;

  // Cost adjustment for how many literals we are planning to insert
  // anyway.
  int insert_length_;

  double average_cost_;

  const StaticDictionary *static_dict_;
};

struct Hashers {
  enum Type {
    HASH_15_8_4 = 0,
    HASH_15_8_2 = 1,
  };

  void Init(Type type) {
    switch (type) {
      case HASH_15_8_4:
        hash_15_8_4.reset(new HashLongestMatch<15, 8, 4>());
        break;
      case HASH_15_8_2:
        hash_15_8_2.reset(new HashLongestMatch<15, 8, 2>());
        break;
      default:
        break;
    }
  }

  void SetStaticDictionary(const StaticDictionary *dict) {
    if (hash_15_8_4.get() != NULL) hash_15_8_4->SetStaticDictionary(dict);
    if (hash_15_8_2.get() != NULL) hash_15_8_2->SetStaticDictionary(dict);
  }

  std::unique_ptr<HashLongestMatch<15, 8, 4> > hash_15_8_4;
  std::unique_ptr<HashLongestMatch<15, 8, 2> > hash_15_8_2;
};

}  // namespace brotli

#endif  // BROTLI_ENC_HASH_H_