aboutsummaryrefslogtreecommitdiff
path: root/celt/bands.c
diff options
context:
space:
mode:
Diffstat (limited to 'celt/bands.c')
-rw-r--r--celt/bands.c1188
1 files changed, 696 insertions, 492 deletions
diff --git a/celt/bands.c b/celt/bands.c
index 3be543c..93bd0bc 100644
--- a/celt/bands.c
+++ b/celt/bands.c
@@ -40,6 +40,23 @@
#include "os_support.h"
#include "mathops.h"
#include "rate.h"
+#include "quant_bands.h"
+#include "pitch.h"
+
+int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
+{
+ int i;
+ for (i=0;i<N;i++)
+ {
+ if (val < thresholds[i])
+ break;
+ }
+ if (i>prev && val < thresholds[prev]+hysteresis[prev])
+ i=prev;
+ if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
+ i=prev;
+ return i;
+}
opus_uint32 celt_lcg_rand(opus_uint32 seed)
{
@@ -172,7 +189,8 @@ void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, cel
#endif /* FIXED_POINT */
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
-void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, celt_sig * OPUS_RESTRICT freq, const celt_ener *bandE, int end, int C, int M)
+void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
+ celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, int end, int C, int M)
{
int i, c, N;
const opus_int16 *eBands = m->eBands;
@@ -182,18 +200,39 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, cel
celt_sig * OPUS_RESTRICT f;
const celt_norm * OPUS_RESTRICT x;
f = freq+c*N;
- x = X+c*N;
- for (i=0;i<end;i++)
+ x = X+c*N+M*eBands[start];
+ for (i=0;i<M*eBands[start];i++)
+ *f++ = 0;
+ for (i=start;i<end;i++)
{
int j, band_end;
- opus_val32 g = SHR32(bandE[i+c*m->nbEBands],1);
+ opus_val16 g;
+ opus_val16 lg;
+#ifdef FIXED_POINT
+ int shift;
+#endif
j=M*eBands[i];
band_end = M*eBands[i+1];
+ lg = ADD16(bandLogE[i+c*m->nbEBands], SHL16((opus_val16)eMeans[i],6));
+#ifdef FIXED_POINT
+ /* Handle the integer part of the log energy */
+ shift = 16-(lg>>DB_SHIFT);
+ if (shift>31)
+ {
+ shift=0;
+ g=0;
+ } else {
+ /* Handle the fractional part. */
+ g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
+ }
+#else
+ g = celt_exp2(lg);
+#endif
do {
- *f++ = SHL32(MULT16_32_Q15(*x, g),2);
- x++;
+ *f++ = SHR32(MULT16_16(*x++, g), shift);
} while (++j<band_end);
}
+ celt_assert(start <= end);
for (i=M*eBands[end];i<N;i++)
*f++ = 0;
} while (++c<C);
@@ -345,11 +384,7 @@ static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N)
opus_val32 t, lgain, rgain;
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
- for (j=0;j<N;j++)
- {
- xp = MAC16_16(xp, X[j], Y[j]);
- side = MAC16_16(side, Y[j], Y[j]);
- }
+ dual_inner_prod(Y, X, Y, N, &xp, &side);
/* Compensating for the mid normalization */
xp = MULT16_32_Q15(mid, xp);
/* mid and side are in Q15, not Q14 like X and Y */
@@ -483,50 +518,6 @@ int spreading_decision(const CELTMode *m, celt_norm *X, int *average,
return decision;
}
-#ifdef MEASURE_NORM_MSE
-
-float MSE[30] = {0};
-int nbMSEBands = 0;
-int MSECount[30] = {0};
-
-void dump_norm_mse(void)
-{
- int i;
- for (i=0;i<nbMSEBands;i++)
- {
- printf ("%g ", MSE[i]/MSECount[i]);
- }
- printf ("\n");
-}
-
-void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C)
-{
- static int init = 0;
- int i;
- if (!init)
- {
- atexit(dump_norm_mse);
- init = 1;
- }
- for (i=0;i<m->nbEBands;i++)
- {
- int j;
- int c;
- float g;
- if (bandE0[i]<10 || (C==2 && bandE0[i+m->nbEBands]<1))
- continue;
- c=0; do {
- g = bandE[i+c*m->nbEBands]/(1e-15+bandE0[i+c*m->nbEBands]);
- for (j=M*m->eBands[i];j<M*m->eBands[i+1];j++)
- MSE[i] += (g*X[j+c*N]-X0[j+c*N])*(g*X[j+c*N]-X0[j+c*N]);
- } while (++c<C);
- MSECount[i]+=C;
- }
- nbMSEBands = m->nbEBands;
-}
-
-#endif
-
/* Indexing table for converting from natural Hadamard to ordery Hadamard
This is essentially a bit-reversed Gray, on top of which we've added
an inversion of the order because we want the DC at the end rather than
@@ -629,289 +620,304 @@ static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
return qn;
}
-/* This function is responsible for encoding and decoding a band for both
- the mono and stereo case. Even in the mono case, it can split the band
- in two and transmit the energy difference with the two half-bands. It
- can be called recursively so bands can end up being split in 8 parts. */
-static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y,
- int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, ec_ctx *ec,
- opus_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level,
- opus_uint32 *seed, opus_val16 gain, celt_norm *lowband_scratch, int fill)
+struct band_ctx {
+ int encode;
+ const CELTMode *m;
+ int i;
+ int intensity;
+ int spread;
+ int tf_change;
+ ec_ctx *ec;
+ opus_int32 remaining_bits;
+ const celt_ener *bandE;
+ opus_uint32 seed;
+};
+
+struct split_ctx {
+ int inv;
+ int imid;
+ int iside;
+ int delta;
+ int itheta;
+ int qalloc;
+};
+
+static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
+ celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
+ int LM,
+ int stereo, int *fill)
{
- const unsigned char *cache;
- int q;
- int curr_bits;
- int stereo, split;
- int imid=0, iside=0;
- int N0=N;
- int N_B=N;
- int N_B0;
- int B0=B;
- int time_divide=0;
- int recombine=0;
- int inv = 0;
- opus_val16 mid=0, side=0;
- int longBlocks;
- unsigned cm=0;
-#ifdef RESYNTH
- int resynth = 1;
-#else
- int resynth = !encode;
-#endif
+ int qn;
+ int itheta=0;
+ int delta;
+ int imid, iside;
+ int qalloc;
+ int pulse_cap;
+ int offset;
+ opus_int32 tell;
+ int inv=0;
+ int encode;
+ const CELTMode *m;
+ int i;
+ int intensity;
+ ec_ctx *ec;
+ const celt_ener *bandE;
+
+ encode = ctx->encode;
+ m = ctx->m;
+ i = ctx->i;
+ intensity = ctx->intensity;
+ ec = ctx->ec;
+ bandE = ctx->bandE;
+
+ /* Decide on the resolution to give to the split parameter theta */
+ pulse_cap = m->logN[i]+LM*(1<<BITRES);
+ offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
+ qn = compute_qn(N, *b, offset, pulse_cap, stereo);
+ if (stereo && i>=intensity)
+ qn = 1;
+ if (encode)
+ {
+ /* theta is the atan() of the ratio between the (normalized)
+ side and mid. With just that parameter, we can re-scale both
+ mid and side because we know that 1) they have unit norm and
+ 2) they are orthogonal. */
+ itheta = stereo_itheta(X, Y, stereo, N);
+ }
+ tell = ec_tell_frac(ec);
+ if (qn!=1)
+ {
+ if (encode)
+ itheta = (itheta*qn+8192)>>14;
- longBlocks = B0==1;
+ /* Entropy coding of the angle. We use a uniform pdf for the
+ time split, a step for stereo, and a triangular one for the rest. */
+ if (stereo && N>2)
+ {
+ int p0 = 3;
+ int x = itheta;
+ int x0 = qn/2;
+ int ft = p0*(x0+1) + x0;
+ /* Use a probability of p0 up to itheta=8192 and then use 1 after */
+ if (encode)
+ {
+ ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
+ } else {
+ int fs;
+ fs=ec_decode(ec,ft);
+ if (fs<(x0+1)*p0)
+ x=fs/p0;
+ else
+ x=x0+1+(fs-(x0+1)*p0);
+ ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
+ itheta = x;
+ }
+ } else if (B0>1 || stereo) {
+ /* Uniform pdf */
+ if (encode)
+ ec_enc_uint(ec, itheta, qn+1);
+ else
+ itheta = ec_dec_uint(ec, qn+1);
+ } else {
+ int fs=1, ft;
+ ft = ((qn>>1)+1)*((qn>>1)+1);
+ if (encode)
+ {
+ int fl;
- N_B /= B;
- N_B0 = N_B;
+ fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
+ fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
+ ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
- split = stereo = Y != NULL;
+ ec_encode(ec, fl, fl+fs, ft);
+ } else {
+ /* Triangular pdf */
+ int fl=0;
+ int fm;
+ fm = ec_decode(ec, ft);
- /* Special case for one sample */
- if (N==1)
- {
- int c;
- celt_norm *x = X;
- c=0; do {
- int sign=0;
- if (*remaining_bits>=1<<BITRES)
- {
- if (encode)
+ if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
{
- sign = x[0]<0;
- ec_enc_bits(ec, sign, 1);
- } else {
- sign = ec_dec_bits(ec, 1);
+ itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
+ fs = itheta + 1;
+ fl = itheta*(itheta + 1)>>1;
+ }
+ else
+ {
+ itheta = (2*(qn + 1)
+ - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
+ fs = qn + 1 - itheta;
+ fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
}
- *remaining_bits -= 1<<BITRES;
- b-=1<<BITRES;
- }
- if (resynth)
- x[0] = sign ? -NORM_SCALING : NORM_SCALING;
- x = Y;
- } while (++c<1+stereo);
- if (lowband_out)
- lowband_out[0] = SHR16(X[0],4);
- return 1;
- }
-
- if (!stereo && level == 0)
- {
- int k;
- if (tf_change>0)
- recombine = tf_change;
- /* Band recombining to increase frequency resolution */
- if (lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
- {
- int j;
- for (j=0;j<N;j++)
- lowband_scratch[j] = lowband[j];
- lowband = lowband_scratch;
+ ec_dec_update(ec, fl, fl+fs, ft);
+ }
}
-
- for (k=0;k<recombine;k++)
+ itheta = (opus_int32)itheta*16384/qn;
+ if (encode && stereo)
{
- static const unsigned char bit_interleave_table[16]={
- 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
- };
- if (encode)
- haar1(X, N>>k, 1<<k);
- if (lowband)
- haar1(lowband, N>>k, 1<<k);
- fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
+ if (itheta==0)
+ intensity_stereo(m, X, Y, bandE, i, N);
+ else
+ stereo_split(X, Y, N);
}
- B>>=recombine;
- N_B<<=recombine;
-
- /* Increasing the time resolution */
- while ((N_B&1) == 0 && tf_change<0)
+ /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
+ Let's do that at higher complexity */
+ } else if (stereo) {
+ if (encode)
{
- if (encode)
- haar1(X, N_B, B);
- if (lowband)
- haar1(lowband, N_B, B);
- fill |= fill<<B;
- B <<= 1;
- N_B >>= 1;
- time_divide++;
- tf_change++;
+ inv = itheta > 8192;
+ if (inv)
+ {
+ int j;
+ for (j=0;j<N;j++)
+ Y[j] = -Y[j];
+ }
+ intensity_stereo(m, X, Y, bandE, i, N);
}
- B0=B;
- N_B0 = N_B;
-
- /* Reorganize the samples in time order instead of frequency order */
- if (B0>1)
+ if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
{
if (encode)
- deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
- if (lowband)
- deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
- }
+ ec_enc_bit_logp(ec, inv, 2);
+ else
+ inv = ec_dec_bit_logp(ec, 2);
+ } else
+ inv = 0;
+ itheta = 0;
}
+ qalloc = ec_tell_frac(ec) - tell;
+ *b -= qalloc;
- /* If we need 1.5 more bit than we can produce, split the band in two. */
- cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
- if (!stereo && LM != -1 && b > cache[cache[0]]+12 && N>2)
+ if (itheta == 0)
{
- N >>= 1;
- Y = X+N;
- split = 1;
- LM -= 1;
- if (B==1)
- fill = (fill&1)|(fill<<1);
- B = (B+1)>>1;
+ imid = 32767;
+ iside = 0;
+ *fill &= (1<<B)-1;
+ delta = -16384;
+ } else if (itheta == 16384)
+ {
+ imid = 0;
+ iside = 32767;
+ *fill &= ((1<<B)-1)<<B;
+ delta = 16384;
+ } else {
+ imid = bitexact_cos((opus_int16)itheta);
+ iside = bitexact_cos((opus_int16)(16384-itheta));
+ /* This is the mid vs side allocation that minimizes squared error
+ in that band. */
+ delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
}
- if (split)
- {
- int qn;
- int itheta=0;
- int mbits, sbits, delta;
- int qalloc;
- int pulse_cap;
- int offset;
- int orig_fill;
- opus_int32 tell;
+ sctx->inv = inv;
+ sctx->imid = imid;
+ sctx->iside = iside;
+ sctx->delta = delta;
+ sctx->itheta = itheta;
+ sctx->qalloc = qalloc;
+}
+static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
+ celt_norm *lowband_out)
+{
+#ifdef RESYNTH
+ int resynth = 1;
+#else
+ int resynth = !ctx->encode;
+#endif
+ int c;
+ int stereo;
+ celt_norm *x = X;
+ int encode;
+ ec_ctx *ec;
- /* Decide on the resolution to give to the split parameter theta */
- pulse_cap = m->logN[i]+LM*(1<<BITRES);
- offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
- qn = compute_qn(N, b, offset, pulse_cap, stereo);
- if (stereo && i>=intensity)
- qn = 1;
- if (encode)
- {
- /* theta is the atan() of the ratio between the (normalized)
- side and mid. With just that parameter, we can re-scale both
- mid and side because we know that 1) they have unit norm and
- 2) they are orthogonal. */
- itheta = stereo_itheta(X, Y, stereo, N);
- }
- tell = ec_tell_frac(ec);
- if (qn!=1)
+ encode = ctx->encode;
+ ec = ctx->ec;
+
+ stereo = Y != NULL;
+ c=0; do {
+ int sign=0;
+ if (ctx->remaining_bits>=1<<BITRES)
{
if (encode)
- itheta = (itheta*qn+8192)>>14;
-
- /* Entropy coding of the angle. We use a uniform pdf for the
- time split, a step for stereo, and a triangular one for the rest. */
- if (stereo && N>2)
{
- int p0 = 3;
- int x = itheta;
- int x0 = qn/2;
- int ft = p0*(x0+1) + x0;
- /* Use a probability of p0 up to itheta=8192 and then use 1 after */
- if (encode)
- {
- ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
- } else {
- int fs;
- fs=ec_decode(ec,ft);
- if (fs<(x0+1)*p0)
- x=fs/p0;
- else
- x=x0+1+(fs-(x0+1)*p0);
- ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
- itheta = x;
- }
- } else if (B0>1 || stereo) {
- /* Uniform pdf */
- if (encode)
- ec_enc_uint(ec, itheta, qn+1);
- else
- itheta = ec_dec_uint(ec, qn+1);
+ sign = x[0]<0;
+ ec_enc_bits(ec, sign, 1);
} else {
- int fs=1, ft;
- ft = ((qn>>1)+1)*((qn>>1)+1);
- if (encode)
- {
- int fl;
+ sign = ec_dec_bits(ec, 1);
+ }
+ ctx->remaining_bits -= 1<<BITRES;
+ b-=1<<BITRES;
+ }
+ if (resynth)
+ x[0] = sign ? -NORM_SCALING : NORM_SCALING;
+ x = Y;
+ } while (++c<1+stereo);
+ if (lowband_out)
+ lowband_out[0] = SHR16(X[0],4);
+ return 1;
+}
- fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
- fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
- ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
+/* This function is responsible for encoding and decoding a mono partition.
+ It can split the band in two and transmit the energy difference with
+ the two half-bands. It can be called recursively so bands can end up being
+ split in 8 parts. */
+static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
+ int N, int b, int B, celt_norm *lowband,
+ int LM,
+ opus_val16 gain, int fill)
+{
+ const unsigned char *cache;
+ int q;
+ int curr_bits;
+ int imid=0, iside=0;
+ int N_B=N;
+ int B0=B;
+ opus_val16 mid=0, side=0;
+ unsigned cm=0;
+#ifdef RESYNTH
+ int resynth = 1;
+#else
+ int resynth = !ctx->encode;
+#endif
+ celt_norm *Y=NULL;
+ int encode;
+ const CELTMode *m;
+ int i;
+ int spread;
+ ec_ctx *ec;
- ec_encode(ec, fl, fl+fs, ft);
- } else {
- /* Triangular pdf */
- int fl=0;
- int fm;
- fm = ec_decode(ec, ft);
+ encode = ctx->encode;
+ m = ctx->m;
+ i = ctx->i;
+ spread = ctx->spread;
+ ec = ctx->ec;
- if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
- {
- itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
- fs = itheta + 1;
- fl = itheta*(itheta + 1)>>1;
- }
- else
- {
- itheta = (2*(qn + 1)
- - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
- fs = qn + 1 - itheta;
- fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
- }
+ N_B /= B;
- ec_dec_update(ec, fl, fl+fs, ft);
- }
- }
- itheta = (opus_int32)itheta*16384/qn;
- if (encode && stereo)
- {
- if (itheta==0)
- intensity_stereo(m, X, Y, bandE, i, N);
- else
- stereo_split(X, Y, N);
- }
- /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
- Let's do that at higher complexity */
- } else if (stereo) {
- if (encode)
- {
- inv = itheta > 8192;
- if (inv)
- {
- int j;
- for (j=0;j<N;j++)
- Y[j] = -Y[j];
- }
- intensity_stereo(m, X, Y, bandE, i, N);
- }
- if (b>2<<BITRES && *remaining_bits > 2<<BITRES)
- {
- if (encode)
- ec_enc_bit_logp(ec, inv, 2);
- else
- inv = ec_dec_bit_logp(ec, 2);
- } else
- inv = 0;
- itheta = 0;
- }
- qalloc = ec_tell_frac(ec) - tell;
- b -= qalloc;
+ /* If we need 1.5 more bit than we can produce, split the band in two. */
+ cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
+ if (LM != -1 && b > cache[cache[0]]+12 && N>2)
+ {
+ int mbits, sbits, delta;
+ int itheta;
+ int qalloc;
+ struct split_ctx sctx;
+ celt_norm *next_lowband2=NULL;
+ opus_int32 rebalance;
- orig_fill = fill;
- if (itheta == 0)
- {
- imid = 32767;
- iside = 0;
- fill &= (1<<B)-1;
- delta = -16384;
- } else if (itheta == 16384)
- {
- imid = 0;
- iside = 32767;
- fill &= ((1<<B)-1)<<B;
- delta = 16384;
- } else {
- imid = bitexact_cos((opus_int16)itheta);
- iside = bitexact_cos((opus_int16)(16384-itheta));
- /* This is the mid vs side allocation that minimizes squared error
- in that band. */
- delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
- }
+ N >>= 1;
+ Y = X+N;
+ LM -= 1;
+ if (B==1)
+ fill = (fill&1)|(fill<<1);
+ B = (B+1)>>1;
+ compute_theta(ctx, &sctx, X, Y, N, &b, B, B0,
+ LM, 0, &fill);
+ imid = sctx.imid;
+ iside = sctx.iside;
+ delta = sctx.delta;
+ itheta = sctx.itheta;
+ qalloc = sctx.qalloc;
#ifdef FIXED_POINT
mid = imid;
side = iside;
@@ -920,136 +926,59 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
side = (1.f/32768)*iside;
#endif
- /* This is a special case for N=2 that only works for stereo and takes
- advantage of the fact that mid and side are orthogonal to encode
- the side with just one bit. */
- if (N==2 && stereo)
+ /* Give more bits to low-energy MDCTs than they would otherwise deserve */
+ if (B0>1 && (itheta&0x3fff))
{
- int c;
- int sign=0;
- celt_norm *x2, *y2;
- mbits = b;
- sbits = 0;
- /* Only need one bit for the side */
- if (itheta != 0 && itheta != 16384)
- sbits = 1<<BITRES;
- mbits -= sbits;
- c = itheta > 8192;
- *remaining_bits -= qalloc+sbits;
-
- x2 = c ? Y : X;
- y2 = c ? X : Y;
- if (sbits)
- {
- if (encode)
- {
- /* Here we only need to encode a sign for the side */
- sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
- ec_enc_bits(ec, sign, 1);
- } else {
- sign = ec_dec_bits(ec, 1);
- }
- }
- sign = 1-2*sign;
- /* We use orig_fill here because we want to fold the side, but if
- itheta==16384, we'll have cleared the low bits of fill. */
- cm = quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, intensity, tf_change, lowband, ec, remaining_bits, LM, lowband_out, NULL, level, seed, gain, lowband_scratch, orig_fill);
- /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
- and there's no need to worry about mixing with the other channel. */
- y2[0] = -sign*x2[1];
- y2[1] = sign*x2[0];
- if (resynth)
- {
- celt_norm tmp;
- X[0] = MULT16_16_Q15(mid, X[0]);
- X[1] = MULT16_16_Q15(mid, X[1]);
- Y[0] = MULT16_16_Q15(side, Y[0]);
- Y[1] = MULT16_16_Q15(side, Y[1]);
- tmp = X[0];
- X[0] = SUB16(tmp,Y[0]);
- Y[0] = ADD16(tmp,Y[0]);
- tmp = X[1];
- X[1] = SUB16(tmp,Y[1]);
- Y[1] = ADD16(tmp,Y[1]);
- }
- } else {
- /* "Normal" split code */
- celt_norm *next_lowband2=NULL;
- celt_norm *next_lowband_out1=NULL;
- int next_level=0;
- opus_int32 rebalance;
-
- /* Give more bits to low-energy MDCTs than they would otherwise deserve */
- if (B0>1 && !stereo && (itheta&0x3fff))
- {
- if (itheta > 8192)
- /* Rough approximation for pre-echo masking */
- delta -= delta>>(4-LM);
- else
- /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
- delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
- }
- mbits = IMAX(0, IMIN(b, (b-delta)/2));
- sbits = b-mbits;
- *remaining_bits -= qalloc;
-
- if (lowband && !stereo)
- next_lowband2 = lowband+N; /* >32-bit split case */
-
- /* Only stereo needs to pass on lowband_out. Otherwise, it's
- handled at the end */
- if (stereo)
- next_lowband_out1 = lowband_out;
+ if (itheta > 8192)
+ /* Rough approximation for pre-echo masking */
+ delta -= delta>>(4-LM);
else
- next_level = level+1;
-
- rebalance = *remaining_bits;
- if (mbits >= sbits)
- {
- /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
- mid for folding later */
- cm = quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change,
- lowband, ec, remaining_bits, LM, next_lowband_out1,
- NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill);
- rebalance = mbits - (rebalance-*remaining_bits);
- if (rebalance > 3<<BITRES && itheta!=0)
- sbits += rebalance - (3<<BITRES);
-
- /* For a stereo split, the high bits of fill are always zero, so no
- folding will be done to the side. */
- cm |= quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change,
- next_lowband2, ec, remaining_bits, LM, NULL,
- NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(stereo-1));
- } else {
- /* For a stereo split, the high bits of fill are always zero, so no
- folding will be done to the side. */
- cm = quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change,
- next_lowband2, ec, remaining_bits, LM, NULL,
- NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(stereo-1));
- rebalance = sbits - (rebalance-*remaining_bits);
- if (rebalance > 3<<BITRES && itheta!=16384)
- mbits += rebalance - (3<<BITRES);
- /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
- mid for folding later */
- cm |= quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change,
- lowband, ec, remaining_bits, LM, next_lowband_out1,
- NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill);
- }
+ /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
+ delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
}
+ mbits = IMAX(0, IMIN(b, (b-delta)/2));
+ sbits = b-mbits;
+ ctx->remaining_bits -= qalloc;
+
+ if (lowband)
+ next_lowband2 = lowband+N; /* >32-bit split case */
+ rebalance = ctx->remaining_bits;
+ if (mbits >= sbits)
+ {
+ cm = quant_partition(ctx, X, N, mbits, B,
+ lowband, LM,
+ MULT16_16_P15(gain,mid), fill);
+ rebalance = mbits - (rebalance-ctx->remaining_bits);
+ if (rebalance > 3<<BITRES && itheta!=0)
+ sbits += rebalance - (3<<BITRES);
+ cm |= quant_partition(ctx, Y, N, sbits, B,
+ next_lowband2, LM,
+ MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
+ } else {
+ cm = quant_partition(ctx, Y, N, sbits, B,
+ next_lowband2, LM,
+ MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
+ rebalance = sbits - (rebalance-ctx->remaining_bits);
+ if (rebalance > 3<<BITRES && itheta!=16384)
+ mbits += rebalance - (3<<BITRES);
+ cm |= quant_partition(ctx, X, N, mbits, B,
+ lowband, LM,
+ MULT16_16_P15(gain,mid), fill);
+ }
} else {
/* This is the basic no-split case */
q = bits2pulses(m, i, LM, b);
curr_bits = pulses2bits(m, i, LM, q);
- *remaining_bits -= curr_bits;
+ ctx->remaining_bits -= curr_bits;
/* Ensures we can never bust the budget */
- while (*remaining_bits < 0 && q > 0)
+ while (ctx->remaining_bits < 0 && q > 0)
{
- *remaining_bits += curr_bits;
+ ctx->remaining_bits += curr_bits;
q--;
curr_bits = pulses2bits(m, i, LM, q);
- *remaining_bits -= curr_bits;
+ ctx->remaining_bits -= curr_bits;
}
if (q!=0)
@@ -1073,7 +1002,7 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
if (resynth)
{
unsigned cm_mask;
- /*B can be as large as 16, so this shift might overflow an int on a
+ /* B can be as large as 16, so this shift might overflow an int on a
16-bit platform; use a long to get defined behavior.*/
cm_mask = (unsigned)(1UL<<B)-1;
fill &= cm_mask;
@@ -1087,8 +1016,8 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
/* Noise */
for (j=0;j<N;j++)
{
- *seed = celt_lcg_rand(*seed);
- X[j] = (celt_norm)((opus_int32)*seed>>20);
+ ctx->seed = celt_lcg_rand(ctx->seed);
+ X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
}
cm = cm_mask;
} else {
@@ -1096,10 +1025,10 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
for (j=0;j<N;j++)
{
opus_val16 tmp;
- *seed = celt_lcg_rand(*seed);
+ ctx->seed = celt_lcg_rand(ctx->seed);
/* About 48 dB below the "normal" folding level */
tmp = QCONST16(1.0f/256, 10);
- tmp = (*seed)&0x8000 ? tmp : -tmp;
+ tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
X[j] = lowband[j]+tmp;
}
cm = fill;
@@ -1110,64 +1039,307 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
}
}
+ return cm;
+}
+
+
+/* This function is responsible for encoding and decoding a band for the mono case. */
+static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
+ int N, int b, int B, celt_norm *lowband,
+ int LM, celt_norm *lowband_out,
+ opus_val16 gain, celt_norm *lowband_scratch, int fill)
+{
+ int N0=N;
+ int N_B=N;
+ int N_B0;
+ int B0=B;
+ int time_divide=0;
+ int recombine=0;
+ int longBlocks;
+ unsigned cm=0;
+#ifdef RESYNTH
+ int resynth = 1;
+#else
+ int resynth = !ctx->encode;
+#endif
+ int k;
+ int encode;
+ int tf_change;
+
+ encode = ctx->encode;
+ tf_change = ctx->tf_change;
+
+ longBlocks = B0==1;
+
+ N_B /= B;
+ N_B0 = N_B;
+
+ /* Special case for one sample */
+ if (N==1)
+ {
+ return quant_band_n1(ctx, X, NULL, b, lowband_out);
+ }
+
+ if (tf_change>0)
+ recombine = tf_change;
+ /* Band recombining to increase frequency resolution */
+
+ if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
+ {
+ int j;
+ for (j=0;j<N;j++)
+ lowband_scratch[j] = lowband[j];
+ lowband = lowband_scratch;
+ }
+
+ for (k=0;k<recombine;k++)
+ {
+ static const unsigned char bit_interleave_table[16]={
+ 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
+ };
+ if (encode)
+ haar1(X, N>>k, 1<<k);
+ if (lowband)
+ haar1(lowband, N>>k, 1<<k);
+ fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
+ }
+ B>>=recombine;
+ N_B<<=recombine;
+
+ /* Increasing the time resolution */
+ while ((N_B&1) == 0 && tf_change<0)
+ {
+ if (encode)
+ haar1(X, N_B, B);
+ if (lowband)
+ haar1(lowband, N_B, B);
+ fill |= fill<<B;
+ B <<= 1;
+ N_B >>= 1;
+ time_divide++;
+ tf_change++;
+ }
+ B0=B;
+ N_B0 = N_B;
+
+ /* Reorganize the samples in time order instead of frequency order */
+ if (B0>1)
+ {
+ if (encode)
+ deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
+ if (lowband)
+ deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
+ }
+
+ cm = quant_partition(ctx, X, N, b, B, lowband,
+ LM, gain, fill);
+
/* This code is used by the decoder and by the resynthesis-enabled encoder */
if (resynth)
{
- if (stereo)
+ /* Undo the sample reorganization going from time order to frequency order */
+ if (B0>1)
+ interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
+
+ /* Undo time-freq changes that we did earlier */
+ N_B = N_B0;
+ B = B0;
+ for (k=0;k<time_divide;k++)
{
- if (N!=2)
- stereo_merge(X, Y, mid, N);
- if (inv)
- {
- int j;
- for (j=0;j<N;j++)
- Y[j] = -Y[j];
- }
- } else if (level == 0)
+ B >>= 1;
+ N_B <<= 1;
+ cm |= cm>>B;
+ haar1(X, N_B, B);
+ }
+
+ for (k=0;k<recombine;k++)
{
- int k;
+ static const unsigned char bit_deinterleave_table[16]={
+ 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
+ 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
+ };
+ cm = bit_deinterleave_table[cm];
+ haar1(X, N0>>k, 1<<k);
+ }
+ B<<=recombine;
- /* Undo the sample reorganization going from time order to frequency order */
- if (B0>1)
- interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
+ /* Scale output for later folding */
+ if (lowband_out)
+ {
+ int j;
+ opus_val16 n;
+ n = celt_sqrt(SHL32(EXTEND32(N0),22));
+ for (j=0;j<N0;j++)
+ lowband_out[j] = MULT16_16_Q15(n,X[j]);
+ }
+ cm &= (1<<B)-1;
+ }
+ return cm;
+}
- /* Undo time-freq changes that we did earlier */
- N_B = N_B0;
- B = B0;
- for (k=0;k<time_divide;k++)
- {
- B >>= 1;
- N_B <<= 1;
- cm |= cm>>B;
- haar1(X, N_B, B);
- }
- for (k=0;k<recombine;k++)
- {
- static const unsigned char bit_deinterleave_table[16]={
- 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
- 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
- };
- cm = bit_deinterleave_table[cm];
- haar1(X, N0>>k, 1<<k);
- }
- B<<=recombine;
+/* This function is responsible for encoding and decoding a band for the stereo case. */
+static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
+ int N, int b, int B, celt_norm *lowband,
+ int LM, celt_norm *lowband_out,
+ celt_norm *lowband_scratch, int fill)
+{
+ int imid=0, iside=0;
+ int inv = 0;
+ opus_val16 mid=0, side=0;
+ unsigned cm=0;
+#ifdef RESYNTH
+ int resynth = 1;
+#else
+ int resynth = !ctx->encode;
+#endif
+ int mbits, sbits, delta;
+ int itheta;
+ int qalloc;
+ struct split_ctx sctx;
+ int orig_fill;
+ int encode;
+ ec_ctx *ec;
+
+ encode = ctx->encode;
+ ec = ctx->ec;
+
+ /* Special case for one sample */
+ if (N==1)
+ {
+ return quant_band_n1(ctx, X, Y, b, lowband_out);
+ }
+
+ orig_fill = fill;
+
+ compute_theta(ctx, &sctx, X, Y, N, &b, B, B,
+ LM, 1, &fill);
+ inv = sctx.inv;
+ imid = sctx.imid;
+ iside = sctx.iside;
+ delta = sctx.delta;
+ itheta = sctx.itheta;
+ qalloc = sctx.qalloc;
+#ifdef FIXED_POINT
+ mid = imid;
+ side = iside;
+#else
+ mid = (1.f/32768)*imid;
+ side = (1.f/32768)*iside;
+#endif
- /* Scale output for later folding */
- if (lowband_out)
+ /* This is a special case for N=2 that only works for stereo and takes
+ advantage of the fact that mid and side are orthogonal to encode
+ the side with just one bit. */
+ if (N==2)
+ {
+ int c;
+ int sign=0;
+ celt_norm *x2, *y2;
+ mbits = b;
+ sbits = 0;
+ /* Only need one bit for the side. */
+ if (itheta != 0 && itheta != 16384)
+ sbits = 1<<BITRES;
+ mbits -= sbits;
+ c = itheta > 8192;
+ ctx->remaining_bits -= qalloc+sbits;
+
+ x2 = c ? Y : X;
+ y2 = c ? X : Y;
+ if (sbits)
+ {
+ if (encode)
{
- int j;
- opus_val16 n;
- n = celt_sqrt(SHL32(EXTEND32(N0),22));
- for (j=0;j<N0;j++)
- lowband_out[j] = MULT16_16_Q15(n,X[j]);
+ /* Here we only need to encode a sign for the side. */
+ sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
+ ec_enc_bits(ec, sign, 1);
+ } else {
+ sign = ec_dec_bits(ec, 1);
}
- cm &= (1<<B)-1;
+ }
+ sign = 1-2*sign;
+ /* We use orig_fill here because we want to fold the side, but if
+ itheta==16384, we'll have cleared the low bits of fill. */
+ cm = quant_band(ctx, x2, N, mbits, B, lowband,
+ LM, lowband_out, Q15ONE, lowband_scratch, orig_fill);
+ /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
+ and there's no need to worry about mixing with the other channel. */
+ y2[0] = -sign*x2[1];
+ y2[1] = sign*x2[0];
+ if (resynth)
+ {
+ celt_norm tmp;
+ X[0] = MULT16_16_Q15(mid, X[0]);
+ X[1] = MULT16_16_Q15(mid, X[1]);
+ Y[0] = MULT16_16_Q15(side, Y[0]);
+ Y[1] = MULT16_16_Q15(side, Y[1]);
+ tmp = X[0];
+ X[0] = SUB16(tmp,Y[0]);
+ Y[0] = ADD16(tmp,Y[0]);
+ tmp = X[1];
+ X[1] = SUB16(tmp,Y[1]);
+ Y[1] = ADD16(tmp,Y[1]);
+ }
+ } else {
+ /* "Normal" split code */
+ opus_int32 rebalance;
+
+ mbits = IMAX(0, IMIN(b, (b-delta)/2));
+ sbits = b-mbits;
+ ctx->remaining_bits -= qalloc;
+
+ rebalance = ctx->remaining_bits;
+ if (mbits >= sbits)
+ {
+ /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
+ mid for folding later. */
+ cm = quant_band(ctx, X, N, mbits, B,
+ lowband, LM, lowband_out,
+ Q15ONE, lowband_scratch, fill);
+ rebalance = mbits - (rebalance-ctx->remaining_bits);
+ if (rebalance > 3<<BITRES && itheta!=0)
+ sbits += rebalance - (3<<BITRES);
+
+ /* For a stereo split, the high bits of fill are always zero, so no
+ folding will be done to the side. */
+ cm |= quant_band(ctx, Y, N, sbits, B,
+ NULL, LM, NULL,
+ side, NULL, fill>>B);
+ } else {
+ /* For a stereo split, the high bits of fill are always zero, so no
+ folding will be done to the side. */
+ cm = quant_band(ctx, Y, N, sbits, B,
+ NULL, LM, NULL,
+ side, NULL, fill>>B);
+ rebalance = sbits - (rebalance-ctx->remaining_bits);
+ if (rebalance > 3<<BITRES && itheta!=16384)
+ mbits += rebalance - (3<<BITRES);
+ /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
+ mid for folding later. */
+ cm |= quant_band(ctx, X, N, mbits, B,
+ lowband, LM, lowband_out,
+ Q15ONE, lowband_scratch, fill);
+ }
+ }
+
+
+ /* This code is used by the decoder and by the resynthesis-enabled encoder */
+ if (resynth)
+ {
+ if (N!=2)
+ stereo_merge(X, Y, mid, N);
+ if (inv)
+ {
+ int j;
+ for (j=0;j<N;j++)
+ Y[j] = -Y[j];
}
}
return cm;
}
+
void quant_all_bands(int encode, const CELTMode *m, int start, int end,
celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses,
int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res,
@@ -1178,27 +1350,41 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
VARDECL(celt_norm, _norm);
- VARDECL(celt_norm, lowband_scratch);
+ celt_norm *lowband_scratch;
int B;
int M;
int lowband_offset;
int update_lowband = 1;
int C = Y_ != NULL ? 2 : 1;
+ int norm_offset;
#ifdef RESYNTH
int resynth = 1;
#else
int resynth = !encode;
#endif
+ struct band_ctx ctx;
SAVE_STACK;
M = 1<<LM;
B = shortBlocks ? M : 1;
- ALLOC(_norm, C*M*eBands[m->nbEBands], celt_norm);
- ALLOC(lowband_scratch, M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]), celt_norm);
+ norm_offset = M*eBands[start];
+ /* No need to allocate norm for the last band because we don't need an
+ output in that band. */
+ ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
norm = _norm;
- norm2 = norm + M*eBands[m->nbEBands];
+ norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
+ /* We can use the last band as scratch space because we don't need that
+ scratch space for the last band. */
+ lowband_scratch = X_+M*eBands[m->nbEBands-1];
lowband_offset = 0;
+ ctx.bandE = bandE;
+ ctx.ec = ec;
+ ctx.encode = encode;
+ ctx.intensity = intensity;
+ ctx.m = m;
+ ctx.seed = *seed;
+ ctx.spread = spread;
for (i=start;i<end;i++)
{
opus_int32 tell;
@@ -1210,6 +1396,10 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
int tf_change=0;
unsigned x_cm;
unsigned y_cm;
+ int last;
+
+ ctx.i = i;
+ last = (i==end-1);
X = X_+M*eBands[i];
if (Y_!=NULL)
@@ -1223,6 +1413,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
if (i != start)
balance -= tell;
remaining_bits = total_bits-tell-1;
+ ctx.remaining_bits = remaining_bits;
if (i <= codedBands-1)
{
curr_balance = balance / IMIN(3, codedBands-i);
@@ -1235,26 +1426,30 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
lowband_offset = i;
tf_change = tf_res[i];
+ ctx.tf_change = tf_change;
if (i>=m->effEBands)
{
X=norm;
if (Y_!=NULL)
Y = norm;
+ lowband_scratch = NULL;
}
+ if (i==end-1)
+ lowband_scratch = NULL;
/* Get a conservative estimate of the collapse_mask's for the bands we're
- going to be folding from. */
+ going to be folding from. */
if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
{
int fold_start;
int fold_end;
int fold_i;
/* This ensures we never repeat spectral content within one band */
- effective_lowband = IMAX(M*eBands[start], M*eBands[lowband_offset]-N);
+ effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
fold_start = lowband_offset;
- while(M*eBands[--fold_start] > effective_lowband);
+ while(M*eBands[--fold_start] > effective_lowband+norm_offset);
fold_end = lowband_offset-1;
- while(M*eBands[++fold_end] < effective_lowband+N);
+ while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
x_cm = y_cm = 0;
fold_i = fold_start; do {
x_cm |= collapse_masks[fold_i*C+0];
@@ -1262,7 +1457,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
} while (++fold_i<fold_end);
}
/* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
- always) be non-zero.*/
+ always) be non-zero. */
else
x_cm = y_cm = (1<<B)-1;
@@ -1270,33 +1465,42 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
{
int j;
- /* Switch off dual stereo to do intensity */
+ /* Switch off dual stereo to do intensity. */
dual_stereo = 0;
if (resynth)
- for (j=M*eBands[start];j<M*eBands[i];j++)
+ for (j=0;j<M*eBands[i]-norm_offset;j++)
norm[j] = HALF32(norm[j]+norm2[j]);
}
if (dual_stereo)
{
- x_cm = quant_band(encode, m, i, X, NULL, N, b/2, spread, B, intensity, tf_change,
- effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
- norm+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, x_cm);
- y_cm = quant_band(encode, m, i, Y, NULL, N, b/2, spread, B, intensity, tf_change,
- effective_lowband != -1 ? norm2+effective_lowband : NULL, ec, &remaining_bits, LM,
- norm2+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, y_cm);
+ x_cm = quant_band(&ctx, X, N, b/2, B,
+ effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
+ last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
+ y_cm = quant_band(&ctx, Y, N, b/2, B,
+ effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
+ last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
} else {
- x_cm = quant_band(encode, m, i, X, Y, N, b, spread, B, intensity, tf_change,
- effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
- norm+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, x_cm|y_cm);
+ if (Y!=NULL)
+ {
+ x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
+ effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
+ last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
+ } else {
+ x_cm = quant_band(&ctx, X, N, b, B,
+ effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
+ last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
+ }
y_cm = x_cm;
}
collapse_masks[i*C+0] = (unsigned char)x_cm;
collapse_masks[i*C+C-1] = (unsigned char)y_cm;
balance += pulses[i] + tell;
- /* Update the folding position only as long as we have 1 bit/sample depth */
+ /* Update the folding position only as long as we have 1 bit/sample depth. */
update_lowband = b>(N<<BITRES);
}
+ *seed = ctx.seed;
+
RESTORE_STACK;
}