summaryrefslogtreecommitdiff
path: root/utils/SkMatrix44.h
blob: 9d9b6e01029e5b7887d8aa2059e2b79430a234ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/*
 * Copyright 2011 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#ifndef SkMatrix44_DEFINED
#define SkMatrix44_DEFINED

#include "SkMatrix.h"
#include "SkScalar.h"

#ifdef SK_MSCALAR_IS_DOUBLE
#ifdef SK_MSCALAR_IS_FLOAT
    #error "can't define MSCALAR both as DOUBLE and FLOAT"
#endif
    typedef double SkMScalar;

    static inline double SkFloatToMScalar(float x) {
        return static_cast<double>(x);
    }
    static inline float SkMScalarToFloat(double x) {
        return static_cast<float>(x);
    }
    static inline double SkDoubleToMScalar(double x) {
        return x;
    }
    static inline double SkMScalarToDouble(double x) {
        return x;
    }
    static const SkMScalar SK_MScalarPI = 3.141592653589793;
#elif defined SK_MSCALAR_IS_FLOAT
#ifdef SK_MSCALAR_IS_DOUBLE
    #error "can't define MSCALAR both as DOUBLE and FLOAT"
#endif
    typedef float SkMScalar;

    static inline float SkFloatToMScalar(float x) {
        return x;
    }
    static inline float SkMScalarToFloat(float x) {
        return x;
    }
    static inline float SkDoubleToMScalar(double x) {
        return static_cast<float>(x);
    }
    static inline double SkMScalarToDouble(float x) {
        return static_cast<double>(x);
    }
    static const SkMScalar SK_MScalarPI = 3.14159265f;
#endif

#define SkMScalarToScalar SkMScalarToFloat
#define SkScalarToMScalar SkFloatToMScalar

static const SkMScalar SK_MScalar1 = 1;

///////////////////////////////////////////////////////////////////////////////

struct SkVector4 {
    SkScalar fData[4];

    SkVector4() {
        this->set(0, 0, 0, 1);
    }
    SkVector4(const SkVector4& src) {
        memcpy(fData, src.fData, sizeof(fData));
    }
    SkVector4(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
        fData[0] = x;
        fData[1] = y;
        fData[2] = z;
        fData[3] = w;
    }

    SkVector4& operator=(const SkVector4& src) {
        memcpy(fData, src.fData, sizeof(fData));
        return *this;
    }

    bool operator==(const SkVector4& v) {
        return fData[0] == v.fData[0] && fData[1] == v.fData[1] &&
               fData[2] == v.fData[2] && fData[3] == v.fData[3];
    }
    bool operator!=(const SkVector4& v) {
        return !(*this == v);
    }
    bool equals(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
        return fData[0] == x && fData[1] == y &&
               fData[2] == z && fData[3] == w;
    }

    void set(SkScalar x, SkScalar y, SkScalar z, SkScalar w = SK_Scalar1) {
        fData[0] = x;
        fData[1] = y;
        fData[2] = z;
        fData[3] = w;
    }
};

class SK_API SkMatrix44 {
public:

    enum Uninitialized_Constructor {
        kUninitialized_Constructor
    };
    enum Identity_Constructor {
        kIdentity_Constructor
    };

    SkMatrix44(Uninitialized_Constructor) { }
    SkMatrix44(Identity_Constructor) { this->setIdentity(); }

    // DEPRECATED: use the constructors that take an enum
    SkMatrix44() { this->setIdentity(); }

    SkMatrix44(const SkMatrix44& src) {
        memcpy(fMat, src.fMat, sizeof(fMat));
        fTypeMask = src.fTypeMask;
    }

    SkMatrix44(const SkMatrix44& a, const SkMatrix44& b) {
        this->setConcat(a, b);
    }

    SkMatrix44& operator=(const SkMatrix44& src) {
        if (&src != this) {
            memcpy(fMat, src.fMat, sizeof(fMat));
            fTypeMask = src.fTypeMask;
        }
        return *this;
    }

    bool operator==(const SkMatrix44& other) const;
    bool operator!=(const SkMatrix44& other) const {
        return !(other == *this);
    }

    SkMatrix44(const SkMatrix&);
    SkMatrix44& operator=(const SkMatrix& src);
    operator SkMatrix() const;

    /**
     *  Return a reference to a const identity matrix
     */
    static const SkMatrix44& I();

    enum TypeMask {
        kIdentity_Mask      = 0,
        kTranslate_Mask     = 0x01,  //!< set if the matrix has translation
        kScale_Mask         = 0x02,  //!< set if the matrix has any scale != 1
        kAffine_Mask        = 0x04,  //!< set if the matrix skews or rotates
        kPerspective_Mask   = 0x08   //!< set if the matrix is in perspective
    };

    /**
     *  Returns a bitfield describing the transformations the matrix may
     *  perform. The bitfield is computed conservatively, so it may include
     *  false positives. For example, when kPerspective_Mask is true, all
     *  other bits may be set to true even in the case of a pure perspective
     *  transform.
     */
    inline TypeMask getType() const {
        if (fTypeMask & kUnknown_Mask) {
            fTypeMask = this->computeTypeMask();
        }
        SkASSERT(!(fTypeMask & kUnknown_Mask));
        return (TypeMask)fTypeMask;
    }

    /**
     *  Return true if the matrix is identity.
     */
    inline bool isIdentity() const {
        return kIdentity_Mask == this->getType();
    }

    /**
     *  Return true if the matrix contains translate or is identity.
     */
    inline bool isTranslate() const {
        return !(this->getType() & ~kTranslate_Mask);
    }

    /**
     *  Return true if the matrix only contains scale or translate or is identity.
     */
    inline bool isScaleTranslate() const {
        return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
    }

    void setIdentity();
    inline void reset() { this->setIdentity();}

    /**
     *  get a value from the matrix. The row,col parameters work as follows:
     *  (0, 0)  scale-x
     *  (0, 3)  translate-x
     *  (3, 0)  perspective-x
     */
    inline SkMScalar get(int row, int col) const {
        SkASSERT((unsigned)row <= 3);
        SkASSERT((unsigned)col <= 3);
        return fMat[col][row];
    }

    /**
     *  set a value in the matrix. The row,col parameters work as follows:
     *  (0, 0)  scale-x
     *  (0, 3)  translate-x
     *  (3, 0)  perspective-x
     */
    inline void set(int row, int col, SkMScalar value) {
        SkASSERT((unsigned)row <= 3);
        SkASSERT((unsigned)col <= 3);
        fMat[col][row] = value;
        this->dirtyTypeMask();
    }

    inline double getDouble(int row, int col) const {
        return SkMScalarToDouble(this->get(row, col));
    }
    inline void setDouble(int row, int col, double value) {
        this->set(row, col, SkDoubleToMScalar(value));
    }

    /** These methods allow one to efficiently read matrix entries into an
     *  array. The given array must have room for exactly 16 entries. Whenever
     *  possible, they will try to use memcpy rather than an entry-by-entry
     *  copy.
     */
    void asColMajorf(float[]) const;
    void asColMajord(double[]) const;
    void asRowMajorf(float[]) const;
    void asRowMajord(double[]) const;

    /** These methods allow one to efficiently set all matrix entries from an
     *  array. The given array must have room for exactly 16 entries. Whenever
     *  possible, they will try to use memcpy rather than an entry-by-entry
     *  copy.
     */
    void setColMajorf(const float[]);
    void setColMajord(const double[]);
    void setRowMajorf(const float[]);
    void setRowMajord(const double[]);

#ifdef SK_MSCALAR_IS_FLOAT
    void setColMajor(const SkMScalar data[]) { this->setColMajorf(data); }
    void setRowMajor(const SkMScalar data[]) { this->setRowMajorf(data); }
#else
    void setColMajor(const SkMScalar data[]) { this->setColMajord(data); }
    void setRowMajor(const SkMScalar data[]) { this->setRowMajord(data); }
#endif

    void set3x3(SkMScalar m00, SkMScalar m01, SkMScalar m02,
                SkMScalar m10, SkMScalar m11, SkMScalar m12,
                SkMScalar m20, SkMScalar m21, SkMScalar m22);

    void setTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    void preTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);
    void postTranslate(SkMScalar dx, SkMScalar dy, SkMScalar dz);

    void setScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    void preScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);
    void postScale(SkMScalar sx, SkMScalar sy, SkMScalar sz);

    inline void setScale(SkMScalar scale) {
        this->setScale(scale, scale, scale);
    }
    inline void preScale(SkMScalar scale) {
        this->preScale(scale, scale, scale);
    }
    inline void postScale(SkMScalar scale) {
        this->postScale(scale, scale, scale);
    }

    void setRotateDegreesAbout(SkMScalar x, SkMScalar y, SkMScalar z,
                               SkMScalar degrees) {
        this->setRotateAbout(x, y, z, degrees * SK_MScalarPI / 180);
    }

    /** Rotate about the vector [x,y,z]. If that vector is not unit-length,
        it will be automatically resized.
     */
    void setRotateAbout(SkMScalar x, SkMScalar y, SkMScalar z,
                        SkMScalar radians);
    /** Rotate about the vector [x,y,z]. Does not check the length of the
        vector, assuming it is unit-length.
     */
    void setRotateAboutUnit(SkMScalar x, SkMScalar y, SkMScalar z,
                            SkMScalar radians);

    void setConcat(const SkMatrix44& a, const SkMatrix44& b);
    inline void preConcat(const SkMatrix44& m) {
        this->setConcat(*this, m);
    }
    inline void postConcat(const SkMatrix44& m) {
        this->setConcat(m, *this);
    }

    friend SkMatrix44 operator*(const SkMatrix44& a, const SkMatrix44& b) {
        return SkMatrix44(a, b);
    }

    /** If this is invertible, return that in inverse and return true. If it is
        not invertible, return false and ignore the inverse parameter.
     */
    bool invert(SkMatrix44* inverse) const;

    /** Transpose this matrix in place. */
    void transpose();

    /** Apply the matrix to the src vector, returning the new vector in dst.
        It is legal for src and dst to point to the same memory.
     */
    void mapScalars(const SkScalar src[4], SkScalar dst[4]) const;
    inline void mapScalars(SkScalar vec[4]) const {
        this->mapScalars(vec, vec);
    }

    // DEPRECATED: call mapScalars()
    void map(const SkScalar src[4], SkScalar dst[4]) const {
        this->mapScalars(src, dst);
    }
    // DEPRECATED: call mapScalars()
    void map(SkScalar vec[4]) const {
        this->mapScalars(vec, vec);
    }

#ifdef SK_MSCALAR_IS_DOUBLE
    void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const;
#elif defined SK_MSCALAR_IS_FLOAT
    inline void mapMScalars(const SkMScalar src[4], SkMScalar dst[4]) const {
        this->mapScalars(src, dst);
    }
#endif
    inline void mapMScalars(SkMScalar vec[4]) const {
        this->mapMScalars(vec, vec);
    }

    friend SkVector4 operator*(const SkMatrix44& m, const SkVector4& src) {
        SkVector4 dst;
        m.map(src.fData, dst.fData);
        return dst;
    }

    /**
     *  map an array of [x, y, 0, 1] through the matrix, returning an array
     *  of [x', y', z', w'].
     *
     *  @param src2     array of [x, y] pairs, with implied z=0 and w=1
     *  @param count    number of [x, y] pairs in src2
     *  @param dst4     array of [x', y', z', w'] quads as the output.
     */
    void map2(const float src2[], int count, float dst4[]) const;
    void map2(const double src2[], int count, double dst4[]) const;

    void dump() const;

    double determinant() const;

private:
    SkMScalar           fMat[4][4];
    mutable unsigned    fTypeMask;

    enum {
        kUnknown_Mask = 0x80,

        kAllPublic_Masks = 0xF
    };

    SkMScalar transX() const { return fMat[3][0]; }
    SkMScalar transY() const { return fMat[3][1]; }
    SkMScalar transZ() const { return fMat[3][2]; }

    SkMScalar scaleX() const { return fMat[0][0]; }
    SkMScalar scaleY() const { return fMat[1][1]; }
    SkMScalar scaleZ() const { return fMat[2][2]; }

    SkMScalar perspX() const { return fMat[0][3]; }
    SkMScalar perspY() const { return fMat[1][3]; }
    SkMScalar perspZ() const { return fMat[2][3]; }

    int computeTypeMask() const;

    inline void dirtyTypeMask() {
        fTypeMask = kUnknown_Mask;
    }

    inline void setTypeMask(int mask) {
        SkASSERT(0 == (~(kAllPublic_Masks | kUnknown_Mask) & mask));
        fTypeMask = mask;
    }

    /**
     *  Does not take the time to 'compute' the typemask. Only returns true if
     *  we already know that this matrix is identity.
     */
    inline bool isTriviallyIdentity() const {
        return 0 == fTypeMask;
    }
};

#endif