summaryrefslogtreecommitdiff
path: root/utils/SkInterpolator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/SkInterpolator.cpp')
-rw-r--r--utils/SkInterpolator.cpp331
1 files changed, 331 insertions, 0 deletions
diff --git a/utils/SkInterpolator.cpp b/utils/SkInterpolator.cpp
new file mode 100644
index 00000000..2853b070
--- /dev/null
+++ b/utils/SkInterpolator.cpp
@@ -0,0 +1,331 @@
+
+/*
+ * Copyright 2008 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+
+#include "SkInterpolator.h"
+#include "SkMath.h"
+#include "SkTSearch.h"
+
+SkInterpolatorBase::SkInterpolatorBase() {
+ fStorage = NULL;
+ fTimes = NULL;
+ SkDEBUGCODE(fTimesArray = NULL;)
+}
+
+SkInterpolatorBase::~SkInterpolatorBase() {
+ if (fStorage) {
+ sk_free(fStorage);
+ }
+}
+
+void SkInterpolatorBase::reset(int elemCount, int frameCount) {
+ fFlags = 0;
+ fElemCount = SkToU8(elemCount);
+ fFrameCount = SkToS16(frameCount);
+ fRepeat = SK_Scalar1;
+ if (fStorage) {
+ sk_free(fStorage);
+ fStorage = NULL;
+ fTimes = NULL;
+ SkDEBUGCODE(fTimesArray = NULL);
+ }
+}
+
+/* Each value[] run is formated as:
+ <time (in msec)>
+ <blend>
+ <data[fElemCount]>
+
+ Totaling fElemCount+2 entries per keyframe
+*/
+
+bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
+ if (fFrameCount == 0) {
+ return false;
+ }
+
+ if (startTime) {
+ *startTime = fTimes[0].fTime;
+ }
+ if (endTime) {
+ *endTime = fTimes[fFrameCount - 1].fTime;
+ }
+ return true;
+}
+
+SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime,
+ SkMSec nextTime, const SkScalar blend[4]) {
+ SkASSERT(time > prevTime && time < nextTime);
+
+ SkScalar t = SkScalarDiv((SkScalar)(time - prevTime),
+ (SkScalar)(nextTime - prevTime));
+ return blend ?
+ SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
+}
+
+SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T,
+ int* indexPtr, SkBool* exactPtr) const {
+ SkASSERT(fFrameCount > 0);
+ Result result = kNormal_Result;
+ if (fRepeat != SK_Scalar1) {
+ SkMSec startTime = 0, endTime = 0; // initialize to avoid warning
+ this->getDuration(&startTime, &endTime);
+ SkMSec totalTime = endTime - startTime;
+ SkMSec offsetTime = time - startTime;
+ endTime = SkScalarMulFloor(fRepeat, totalTime);
+ if (offsetTime >= endTime) {
+ SkScalar fraction = SkScalarFraction(fRepeat);
+ offsetTime = fraction == 0 && fRepeat > 0 ? totalTime :
+ (SkMSec) SkScalarMulFloor(fraction, totalTime);
+ result = kFreezeEnd_Result;
+ } else {
+ int mirror = fFlags & kMirror;
+ offsetTime = offsetTime % (totalTime << mirror);
+ if (offsetTime > totalTime) { // can only be true if fMirror is true
+ offsetTime = (totalTime << 1) - offsetTime;
+ }
+ }
+ time = offsetTime + startTime;
+ }
+
+ int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time,
+ sizeof(SkTimeCode));
+
+ bool exact = true;
+
+ if (index < 0) {
+ index = ~index;
+ if (index == 0) {
+ result = kFreezeStart_Result;
+ } else if (index == fFrameCount) {
+ if (fFlags & kReset) {
+ index = 0;
+ } else {
+ index -= 1;
+ }
+ result = kFreezeEnd_Result;
+ } else {
+ exact = false;
+ }
+ }
+ SkASSERT(index < fFrameCount);
+ const SkTimeCode* nextTime = &fTimes[index];
+ SkMSec nextT = nextTime[0].fTime;
+ if (exact) {
+ *T = 0;
+ } else {
+ SkMSec prevT = nextTime[-1].fTime;
+ *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
+ }
+ *indexPtr = index;
+ *exactPtr = exact;
+ return result;
+}
+
+
+SkInterpolator::SkInterpolator() {
+ INHERITED::reset(0, 0);
+ fValues = NULL;
+ SkDEBUGCODE(fScalarsArray = NULL;)
+}
+
+SkInterpolator::SkInterpolator(int elemCount, int frameCount) {
+ SkASSERT(elemCount > 0);
+ this->reset(elemCount, frameCount);
+}
+
+void SkInterpolator::reset(int elemCount, int frameCount) {
+ INHERITED::reset(elemCount, frameCount);
+ fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount +
+ sizeof(SkTimeCode)) * frameCount);
+ fTimes = (SkTimeCode*) fStorage;
+ fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount);
+#ifdef SK_DEBUG
+ fTimesArray = (SkTimeCode(*)[10]) fTimes;
+ fScalarsArray = (SkScalar(*)[10]) fValues;
+#endif
+}
+
+#define SK_Fixed1Third (SK_Fixed1/3)
+#define SK_Fixed2Third (SK_Fixed1*2/3)
+
+static const SkScalar gIdentityBlend[4] = {
+#ifdef SK_SCALAR_IS_FLOAT
+ 0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f
+#else
+ SK_Fixed1Third, SK_Fixed1Third, SK_Fixed2Third, SK_Fixed2Third
+#endif
+};
+
+bool SkInterpolator::setKeyFrame(int index, SkMSec time,
+ const SkScalar values[], const SkScalar blend[4]) {
+ SkASSERT(values != NULL);
+
+ if (blend == NULL) {
+ blend = gIdentityBlend;
+ }
+
+ bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time,
+ sizeof(SkTimeCode));
+ SkASSERT(success);
+ if (success) {
+ SkTimeCode* timeCode = &fTimes[index];
+ timeCode->fTime = time;
+ memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
+ SkScalar* dst = &fValues[fElemCount * index];
+ memcpy(dst, values, fElemCount * sizeof(SkScalar));
+ }
+ return success;
+}
+
+SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time,
+ SkScalar values[]) const {
+ SkScalar T;
+ int index;
+ SkBool exact;
+ Result result = timeToT(time, &T, &index, &exact);
+ if (values) {
+ const SkScalar* nextSrc = &fValues[index * fElemCount];
+
+ if (exact) {
+ memcpy(values, nextSrc, fElemCount * sizeof(SkScalar));
+ } else {
+ SkASSERT(index > 0);
+
+ const SkScalar* prevSrc = nextSrc - fElemCount;
+
+ for (int i = fElemCount - 1; i >= 0; --i) {
+ values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
+ }
+ }
+ }
+ return result;
+}
+
+///////////////////////////////////////////////////////////////////////////////
+
+typedef int Dot14;
+#define Dot14_ONE (1 << 14)
+#define Dot14_HALF (1 << 13)
+
+#define Dot14ToFloat(x) ((x) / 16384.f)
+
+static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
+ return (a * b + Dot14_HALF) >> 14;
+}
+
+static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
+ return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
+}
+
+static inline Dot14 pin_and_convert(SkScalar x) {
+ if (x <= 0) {
+ return 0;
+ }
+ if (x >= SK_Scalar1) {
+ return Dot14_ONE;
+ }
+ return SkScalarToFixed(x) >> 2;
+}
+
+SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by,
+ SkScalar cx, SkScalar cy) {
+ // pin to the unit-square, and convert to 2.14
+ Dot14 x = pin_and_convert(value);
+
+ if (x == 0) return 0;
+ if (x == Dot14_ONE) return SK_Scalar1;
+
+ Dot14 b = pin_and_convert(bx);
+ Dot14 c = pin_and_convert(cx);
+
+ // Now compute our coefficients from the control points
+ // t -> 3b
+ // t^2 -> 3c - 6b
+ // t^3 -> 3b - 3c + 1
+ Dot14 A = 3*b;
+ Dot14 B = 3*(c - 2*b);
+ Dot14 C = 3*(b - c) + Dot14_ONE;
+
+ // Now search for a t value given x
+ Dot14 t = Dot14_HALF;
+ Dot14 dt = Dot14_HALF;
+ for (int i = 0; i < 13; i++) {
+ dt >>= 1;
+ Dot14 guess = eval_cubic(t, A, B, C);
+ if (x < guess) {
+ t -= dt;
+ } else {
+ t += dt;
+ }
+ }
+
+ // Now we have t, so compute the coeff for Y and evaluate
+ b = pin_and_convert(by);
+ c = pin_and_convert(cy);
+ A = 3*b;
+ B = 3*(c - 2*b);
+ C = 3*(b - c) + Dot14_ONE;
+ return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
+}
+
+///////////////////////////////////////////////////////////////////////////////
+///////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_DEBUG
+
+#ifdef SK_SUPPORT_UNITTEST
+ static SkScalar* iset(SkScalar array[3], int a, int b, int c) {
+ array[0] = SkIntToScalar(a);
+ array[1] = SkIntToScalar(b);
+ array[2] = SkIntToScalar(c);
+ return array;
+ }
+#endif
+
+void SkInterpolator::UnitTest() {
+#ifdef SK_SUPPORT_UNITTEST
+ SkInterpolator inter(3, 2);
+ SkScalar v1[3], v2[3], v[3], vv[3];
+ Result result;
+
+ inter.setKeyFrame(0, 100, iset(v1, 10, 20, 30), 0);
+ inter.setKeyFrame(1, 200, iset(v2, 110, 220, 330));
+
+ result = inter.timeToValues(0, v);
+ SkASSERT(result == kFreezeStart_Result);
+ SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
+
+ result = inter.timeToValues(99, v);
+ SkASSERT(result == kFreezeStart_Result);
+ SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
+
+ result = inter.timeToValues(100, v);
+ SkASSERT(result == kNormal_Result);
+ SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
+
+ result = inter.timeToValues(200, v);
+ SkASSERT(result == kNormal_Result);
+ SkASSERT(memcmp(v, v2, sizeof(v)) == 0);
+
+ result = inter.timeToValues(201, v);
+ SkASSERT(result == kFreezeEnd_Result);
+ SkASSERT(memcmp(v, v2, sizeof(v)) == 0);
+
+ result = inter.timeToValues(150, v);
+ SkASSERT(result == kNormal_Result);
+ SkASSERT(memcmp(v, iset(vv, 60, 120, 180), sizeof(v)) == 0);
+
+ result = inter.timeToValues(125, v);
+ SkASSERT(result == kNormal_Result);
+ result = inter.timeToValues(175, v);
+ SkASSERT(result == kNormal_Result);
+#endif
+}
+
+#endif