/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPathRef_DEFINED #define SkPathRef_DEFINED #include "SkRefCnt.h" #include // ptrdiff_t /** * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an * SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs * copy-on-write if the SkPathRef is shared by multipls SkPaths. The caller passes the Editor's * constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's * constructor returns. * * The points and verbs are stored in a single allocation. The points are at the begining of the * allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points * and verbs both grow into the middle of the allocation until the meet. To access verb i in the * verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first * logical verb or the last verb in memory). */ class SkPathRef; class SkPathRef : public ::SkRefCnt { public: SK_DECLARE_INST_COUNT(SkPathRef); class Editor { public: Editor(SkAutoTUnref* pathRef, int incReserveVerbs = 0, int incReservePoints = 0) { if ((*pathRef)->unique()) { (*pathRef)->incReserve(incReserveVerbs, incReservePoints); } else { SkPathRef* copy = SkNEW(SkPathRef); copy->copy(**pathRef, incReserveVerbs, incReservePoints); pathRef->reset(copy); } fPathRef = *pathRef; fPathRef->fGenerationID = 0; SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);) } ~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) } /** * Returns the array of points. */ SkPoint* points() { return fPathRef->fPoints; } /** * Gets the ith point. Shortcut for this->points() + i */ SkPoint* atPoint(int i) { SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt); return this->points() + i; }; /** * Adds the verb and allocates space for the number of points indicated by the verb. The * return value is a pointer to where the points for the verb should be written. */ SkPoint* growForVerb(SkPath::Verb verb) { fPathRef->validate(); return fPathRef->growForVerb(verb); } SkPoint* growForConic(SkScalar w) { fPathRef->validate(); SkPoint* pts = fPathRef->growForVerb(SkPath::kConic_Verb); *fPathRef->fConicWeights.append() = w; return pts; } /** * Allocates space for additional verbs and points and returns pointers to the new verbs and * points. verbs will point one beyond the first new verb (index it using [~]). pts points * at the first new point (indexed normally []). */ void grow(int newVerbs, int newPts, uint8_t** verbs, SkPoint** pts) { SkASSERT(NULL != verbs); SkASSERT(NULL != pts); fPathRef->validate(); int oldVerbCnt = fPathRef->fVerbCnt; int oldPointCnt = fPathRef->fPointCnt; SkASSERT(verbs && pts); fPathRef->grow(newVerbs, newPts); *verbs = fPathRef->fVerbs - oldVerbCnt; *pts = fPathRef->fPoints + oldPointCnt; fPathRef->validate(); } /** * Resets the path ref to a new verb and point count. The new verbs and points are * uninitialized. */ void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) { fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount); } /** * Gets the path ref that is wrapped in the Editor. */ SkPathRef* pathRef() { return fPathRef; } private: SkPathRef* fPathRef; }; public: /** * Gets a path ref with no verbs or points. */ static SkPathRef* CreateEmpty() { static SkPathRef* gEmptyPathRef; if (!gEmptyPathRef) { gEmptyPathRef = SkNEW(SkPathRef); // leak! } return SkRef(gEmptyPathRef); } /** * Transforms a path ref by a matrix, allocating a new one only if necessary. */ static void CreateTransformedCopy(SkAutoTUnref* dst, const SkPathRef& src, const SkMatrix& matrix) { src.validate(); if (matrix.isIdentity()) { if (*dst != &src) { src.ref(); dst->reset(const_cast(&src)); (*dst)->validate(); } return; } bool dstUnique = (*dst)->unique(); if (&src == *dst && dstUnique) { matrix.mapPoints((*dst)->fPoints, (*dst)->fPointCnt); return; } else if (!dstUnique) { dst->reset(SkNEW(SkPathRef)); } (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count()); memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t)); matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt); (*dst)->fConicWeights = src.fConicWeights; (*dst)->validate(); } static SkPathRef* CreateFromBuffer(SkRBuffer* buffer) { SkPathRef* ref = SkNEW(SkPathRef); ref->fGenerationID = buffer->readU32(); int32_t verbCount = buffer->readS32(); int32_t pointCount = buffer->readS32(); int32_t conicCount = buffer->readS32(); ref->resetToSize(verbCount, pointCount, conicCount); SkASSERT(verbCount == ref->countVerbs()); SkASSERT(pointCount == ref->countPoints()); SkASSERT(conicCount == ref->fConicWeights.count()); buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t)); buffer->read(ref->fPoints, pointCount * sizeof(SkPoint)); buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar)); return ref; } /** * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be * repopulated with approximately the same number of verbs and points. A new path ref is created * only if necessary. */ static void Rewind(SkAutoTUnref* pathRef) { if ((*pathRef)->unique()) { (*pathRef)->validate(); (*pathRef)->fVerbCnt = 0; (*pathRef)->fPointCnt = 0; (*pathRef)->fFreeSpace = (*pathRef)->currSize(); (*pathRef)->fGenerationID = 0; (*pathRef)->fConicWeights.rewind(); (*pathRef)->validate(); } else { int oldVCnt = (*pathRef)->countVerbs(); int oldPCnt = (*pathRef)->countPoints(); pathRef->reset(SkNEW(SkPathRef)); (*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt); } } virtual ~SkPathRef() { this->validate(); sk_free(fPoints); SkDEBUGCODE(fPoints = NULL;) SkDEBUGCODE(fVerbs = NULL;) SkDEBUGCODE(fVerbCnt = 0x9999999;) SkDEBUGCODE(fPointCnt = 0xAAAAAAA;) SkDEBUGCODE(fPointCnt = 0xBBBBBBB;) SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;) SkDEBUGCODE(fEditorsAttached = 0x7777777;) } int countPoints() const { this->validate(); return fPointCnt; } int countVerbs() const { this->validate(); return fVerbCnt; } /** * Returns a pointer one beyond the first logical verb (last verb in memory order). */ const uint8_t* verbs() const { this->validate(); return fVerbs; } /** * Returns a const pointer to the first verb in memory (which is the last logical verb). */ const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; } /** * Returns a const pointer to the first point. */ const SkPoint* points() const { this->validate(); return fPoints; } /** * Shortcut for this->points() + this->countPoints() */ const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); } const SkScalar* conicWeights() const { this->validate(); return fConicWeights.begin(); } const SkScalar* conicWeightsEnd() const { this->validate(); return fConicWeights.end(); } /** * Convenience methods for getting to a verb or point by index. */ uint8_t atVerb(int index) { SkASSERT((unsigned) index < (unsigned) fVerbCnt); return this->verbs()[~index]; } const SkPoint& atPoint(int index) const { SkASSERT((unsigned) index < (unsigned) fPointCnt); return this->points()[index]; } bool operator== (const SkPathRef& ref) const { this->validate(); ref.validate(); bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID; #ifdef SK_RELEASE if (genIDMatch) { return true; } #endif if (fPointCnt != ref.fPointCnt || fVerbCnt != ref.fVerbCnt) { SkASSERT(!genIDMatch); return false; } if (0 != memcmp(this->verbsMemBegin(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t))) { SkASSERT(!genIDMatch); return false; } if (0 != memcmp(this->points(), ref.points(), ref.fPointCnt * sizeof(SkPoint))) { SkASSERT(!genIDMatch); return false; } if (fConicWeights != ref.fConicWeights) { SkASSERT(!genIDMatch); return false; } // We've done the work to determine that these are equal. If either has a zero genID, copy // the other's. If both are 0 then genID() will compute the next ID. if (0 == fGenerationID) { fGenerationID = ref.genID(); } else if (0 == ref.fGenerationID) { ref.fGenerationID = this->genID(); } return true; } /** * Writes the path points and verbs to a buffer. */ void writeToBuffer(SkWBuffer* buffer) { this->validate(); SkDEBUGCODE(size_t beforePos = buffer->pos();) // TODO: write gen ID here. Problem: We don't know if we're cross process or not from // SkWBuffer. Until this is fixed we write 0. buffer->write32(0); buffer->write32(fVerbCnt); buffer->write32(fPointCnt); buffer->write32(fConicWeights.count()); buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t)); buffer->write(fPoints, fPointCnt * sizeof(SkPoint)); buffer->write(fConicWeights.begin(), fConicWeights.bytes()); SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize()); } /** * Gets the number of bytes that would be written in writeBuffer() */ uint32_t writeSize() { return 4 * sizeof(uint32_t) + fVerbCnt * sizeof(uint8_t) + fPointCnt * sizeof(SkPoint) + fConicWeights.bytes(); } private: SkPathRef() { fPointCnt = 0; fVerbCnt = 0; fVerbs = NULL; fPoints = NULL; fFreeSpace = 0; fGenerationID = kEmptyGenID; SkDEBUGCODE(fEditorsAttached = 0;) this->validate(); } void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints) { this->validate(); this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(), additionalReserveVerbs, additionalReservePoints); memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t)); memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint)); fConicWeights = ref.fConicWeights; // We could call genID() here to force a real ID (instead of 0). However, if we're making // a copy then presumably we intend to make a modification immediately afterwards. fGenerationID = ref.fGenerationID; this->validate(); } /** Makes additional room but does not change the counts or change the genID */ void incReserve(int additionalVerbs, int additionalPoints) { this->validate(); size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint); this->makeSpace(space); this->validate(); } /** Resets the path ref with verbCount verbs and pointCount points, all unitialized. Also * allocates space for reserveVerb additional verbs and reservePoints additional points.*/ void resetToSize(int verbCount, int pointCount, int conicCount, int reserveVerbs = 0, int reservePoints = 0) { this->validate(); fGenerationID = 0; size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount; size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints; size_t minSize = newSize + newReserve; ptrdiff_t sizeDelta = this->currSize() - minSize; if (sizeDelta < 0 || static_cast(sizeDelta) >= 3 * minSize) { sk_free(fPoints); fPoints = NULL; fVerbs = NULL; fFreeSpace = 0; fVerbCnt = 0; fPointCnt = 0; this->makeSpace(minSize); fVerbCnt = verbCount; fPointCnt = pointCount; fFreeSpace -= newSize; } else { fPointCnt = pointCount; fVerbCnt = verbCount; fFreeSpace = this->currSize() - minSize; } fConicWeights.setCount(conicCount); this->validate(); } /** * Increases the verb count by newVerbs and the point count be newPoints. New verbs and points * are uninitialized. */ void grow(int newVerbs, int newPoints) { this->validate(); size_t space = newVerbs * sizeof(uint8_t) + newPoints * sizeof (SkPoint); this->makeSpace(space); fVerbCnt += newVerbs; fPointCnt += newPoints; fFreeSpace -= space; this->validate(); } /** * Increases the verb count 1, records the new verb, and creates room for the requisite number * of additional points. A pointer to the first point is returned. Any new points are * uninitialized. */ SkPoint* growForVerb(SkPath::Verb verb) { this->validate(); int pCnt; switch (verb) { case SkPath::kMove_Verb: pCnt = 1; break; case SkPath::kLine_Verb: pCnt = 1; break; case SkPath::kQuad_Verb: // fall through case SkPath::kConic_Verb: pCnt = 2; break; case SkPath::kCubic_Verb: pCnt = 3; break; case SkPath::kClose_Verb: pCnt = 0; break; case SkPath::kDone_Verb: SkASSERT(!"growForVerb called for kDone"); // fall through default: SkASSERT(!"default is not reached"); pCnt = 0; } size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint); this->makeSpace(space); this->fVerbs[~fVerbCnt] = verb; SkPoint* ret = fPoints + fPointCnt; fVerbCnt += 1; fPointCnt += pCnt; fFreeSpace -= space; this->validate(); return ret; } /** * Ensures that the free space available in the path ref is >= size. The verb and point counts * are not changed. */ void makeSpace(size_t size) { this->validate(); ptrdiff_t growSize = size - fFreeSpace; if (growSize <= 0) { return; } size_t oldSize = this->currSize(); // round to next multiple of 8 bytes growSize = (growSize + 7) & ~static_cast(7); // we always at least double the allocation if (static_cast(growSize) < oldSize) { growSize = oldSize; } if (growSize < kMinSize) { growSize = kMinSize; } size_t newSize = oldSize + growSize; // Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO: // encapsulate this. fPoints = reinterpret_cast(sk_realloc_throw(fPoints, newSize)); size_t oldVerbSize = fVerbCnt * sizeof(uint8_t); void* newVerbsDst = reinterpret_cast( reinterpret_cast(fPoints) + newSize - oldVerbSize); void* oldVerbsSrc = reinterpret_cast( reinterpret_cast(fPoints) + oldSize - oldVerbSize); memmove(newVerbsDst, oldVerbsSrc, oldVerbSize); fVerbs = reinterpret_cast(reinterpret_cast(fPoints) + newSize); fFreeSpace += growSize; this->validate(); } /** * Private, non-const-ptr version of the public function verbsMemBegin(). */ uint8_t* verbsMemWritable() { this->validate(); return fVerbs - fVerbCnt; } /** * Gets the total amount of space allocated for verbs, points, and reserve. */ size_t currSize() const { return reinterpret_cast(fVerbs) - reinterpret_cast(fPoints); } /** * Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the * same ID then they have the same verbs and points. However, two path refs may have the same * contents but different genIDs. Zero is reserved and means an ID has not yet been determined * for the path ref. */ int32_t genID() const { SkASSERT(!fEditorsAttached); if (!fGenerationID) { if (0 == fPointCnt && 0 == fVerbCnt) { fGenerationID = kEmptyGenID; } else { static int32_t gPathRefGenerationID; // do a loop in case our global wraps around, as we never want to return a 0 or the // empty ID do { fGenerationID = sk_atomic_inc(&gPathRefGenerationID) + 1; } while (fGenerationID <= kEmptyGenID); } } return fGenerationID; } void validate() const { SkASSERT(static_cast(fFreeSpace) >= 0); SkASSERT(reinterpret_cast(fVerbs) - reinterpret_cast(fPoints) >= 0); SkASSERT((NULL == fPoints) == (NULL == fVerbs)); SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); SkASSERT(!(NULL == fPoints && 0 != fFreeSpace)); SkASSERT(!(NULL == fPoints && fPointCnt)); SkASSERT(!(NULL == fVerbs && fVerbCnt)); SkASSERT(this->currSize() == fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt); } enum { kMinSize = 256, }; SkPoint* fPoints; // points to begining of the allocation uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards) int fVerbCnt; int fPointCnt; size_t fFreeSpace; // redundant but saves computation SkTDArray fConicWeights; enum { kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs. }; mutable int32_t fGenerationID; SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time. typedef SkRefCnt INHERITED; }; SK_DEFINE_INST_COUNT(SkPathRef); #endif