/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkAddIntersections.h" #include "SkOpEdgeBuilder.h" #include "SkPathOpsCommon.h" #include "SkPathWriter.h" // FIXME: this and find chase should be merge together, along with // other code that walks winding in angles // OPTIMIZATION: Probably, the walked winding should be rolled into the angle structure // so it isn't duplicated by walkers like this one static SkOpSegment* findChaseOp(SkTDArray& chase, int& nextStart, int& nextEnd) { while (chase.count()) { SkOpSpan* span; chase.pop(&span); const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex); SkOpSegment* segment = backPtr.fOther; nextStart = backPtr.fOtherIndex; SkSTArray angles; int done = 0; if (segment->activeAngle(nextStart, &done, &angles)) { SkOpAngle* last = angles.end() - 1; nextStart = last->start(); nextEnd = last->end(); #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return last->segment(); } if (done == angles.count()) { continue; } SkSTArray sorted; bool sortable = SkOpSegment::SortAngles(angles, &sorted, SkOpSegment::kMayBeUnordered_SortAngleKind); int angleCount = sorted.count(); #if DEBUG_SORT sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, sortable); #endif if (!sortable) { continue; } // find first angle, initialize winding to computed fWindSum int firstIndex = -1; const SkOpAngle* angle; do { angle = sorted[++firstIndex]; segment = angle->segment(); } while (segment->windSum(angle) == SK_MinS32); #if DEBUG_SORT segment->debugShowSort(__FUNCTION__, sorted, firstIndex, sortable); #endif int sumMiWinding = segment->updateWindingReverse(angle); int sumSuWinding = segment->updateOppWindingReverse(angle); if (segment->operand()) { SkTSwap(sumMiWinding, sumSuWinding); } int nextIndex = firstIndex + 1; int lastIndex = firstIndex != 0 ? firstIndex : angleCount; SkOpSegment* first = NULL; do { SkASSERT(nextIndex != firstIndex); if (nextIndex == angleCount) { nextIndex = 0; } angle = sorted[nextIndex]; segment = angle->segment(); int start = angle->start(); int end = angle->end(); int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; segment->setUpWindings(start, end, &sumMiWinding, &sumSuWinding, &maxWinding, &sumWinding, &oppMaxWinding, &oppSumWinding); if (!segment->done(angle)) { if (!first) { first = segment; nextStart = start; nextEnd = end; } (void) segment->markAngle(maxWinding, sumWinding, oppMaxWinding, oppSumWinding, true, angle); } } while (++nextIndex != lastIndex); if (first) { #if TRY_ROTATE *chase.insert(0) = span; #else *chase.append() = span; #endif return first; } } return NULL; } /* static bool windingIsActive(int winding, int oppWinding, int spanWinding, int oppSpanWinding, bool windingIsOp, PathOp op) { bool active = windingIsActive(winding, spanWinding); if (!active) { return false; } if (oppSpanWinding && windingIsActive(oppWinding, oppSpanWinding)) { switch (op) { case kIntersect_Op: case kUnion_Op: return true; case kDifference_Op: { int absSpan = abs(spanWinding); int absOpp = abs(oppSpanWinding); return windingIsOp ? absSpan < absOpp : absSpan > absOpp; } case kXor_Op: return spanWinding != oppSpanWinding; default: SkASSERT(0); } } bool opActive = oppWinding != 0; return gOpLookup[op][opActive][windingIsOp]; } */ static bool bridgeOp(SkTArray& contourList, const SkPathOp op, const int xorMask, const int xorOpMask, SkPathWriter* simple) { bool firstContour = true; bool unsortable = false; bool topUnsortable = false; SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin}; do { int index, endIndex; bool done; SkOpSegment* current = FindSortableTop(contourList, &firstContour, &index, &endIndex, &topLeft, &topUnsortable, &done, true); if (!current) { if (topUnsortable || !done) { topUnsortable = false; SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin); topLeft.fX = topLeft.fY = SK_ScalarMin; continue; } break; } SkTDArray chaseArray; do { if (current->activeOp(index, endIndex, xorMask, xorOpMask, op)) { do { if (!unsortable && current->done()) { #if DEBUG_ACTIVE_SPANS DebugShowActiveSpans(contourList); #endif if (simple->isEmpty()) { simple->init(); break; } } SkASSERT(unsortable || !current->done()); int nextStart = index; int nextEnd = endIndex; SkOpSegment* next = current->findNextOp(&chaseArray, &nextStart, &nextEnd, &unsortable, op, xorMask, xorOpMask); if (!next) { if (!unsortable && simple->hasMove() && current->verb() != SkPath::kLine_Verb && !simple->isClosed()) { current->addCurveTo(index, endIndex, simple, true); SkASSERT(simple->isClosed()); } break; } #if DEBUG_FLOW SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY, current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY); #endif current->addCurveTo(index, endIndex, simple, true); current = next; index = nextStart; endIndex = nextEnd; } while (!simple->isClosed() && (!unsortable || !current->done(SkMin32(index, endIndex)))); if (current->activeWinding(index, endIndex) && !simple->isClosed()) { SkASSERT(unsortable || simple->isEmpty()); int min = SkMin32(index, endIndex); if (!current->done(min)) { current->addCurveTo(index, endIndex, simple, true); current->markDoneBinary(min); } } simple->close(); } else { SkOpSpan* last = current->markAndChaseDoneBinary(index, endIndex); if (last && !last->fLoop) { *chaseArray.append() = last; } } current = findChaseOp(chaseArray, index, endIndex); #if DEBUG_ACTIVE_SPANS DebugShowActiveSpans(contourList); #endif if (!current) { break; } } while (true); } while (true); return simple->someAssemblyRequired(); } // pretty picture: // https://docs.google.com/a/google.com/drawings/d/1sPV8rPfpEFXymBp3iSbDRWAycp1b-7vD9JP2V-kn9Ss/edit?usp=sharing static const SkPathOp gOpInverse[kReverseDifference_PathOp + 1][2][2] = { // inside minuend outside minuend // inside subtrahend outside subtrahend inside subtrahend outside subtrahend {{ kDifference_PathOp, kIntersect_PathOp }, { kUnion_PathOp, kReverseDifference_PathOp }}, {{ kIntersect_PathOp, kDifference_PathOp }, { kReverseDifference_PathOp, kUnion_PathOp }}, {{ kUnion_PathOp, kReverseDifference_PathOp }, { kDifference_PathOp, kIntersect_PathOp }}, {{ kXOR_PathOp, kXOR_PathOp }, { kXOR_PathOp, kXOR_PathOp }}, {{ kReverseDifference_PathOp, kUnion_PathOp }, { kIntersect_PathOp, kDifference_PathOp }}, }; static const bool gOutInverse[kReverseDifference_PathOp + 1][2][2] = { {{ false, false }, { true, false }}, // diff {{ false, false }, { false, true }}, // sect {{ false, true }, { true, true }}, // union {{ false, true }, { true, false }}, // xor {{ false, true }, { false, false }}, // rev diff }; bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) { #if DEBUG_SHOW_TEST_NAME char* debugName = DEBUG_FILENAME_STRING; if (debugName && debugName[0]) { DebugBumpTestName(debugName); DebugShowPath(one, two, op, debugName); } #endif op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()]; SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()] ? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType; const SkPath* minuend = &one; const SkPath* subtrahend = &two; if (op == kReverseDifference_PathOp) { minuend = &two; subtrahend = &one; op = kDifference_PathOp; } #if DEBUG_SORT || DEBUG_SWAP_TOP gDebugSortCount = gDebugSortCountDefault; #endif // turn path into list of segments SkTArray contours; // FIXME: add self-intersecting cubics' T values to segment SkOpEdgeBuilder builder(*minuend, contours); const int xorMask = builder.xorMask(); builder.addOperand(*subtrahend); if (!builder.finish()) { return false; } result->reset(); result->setFillType(fillType); const int xorOpMask = builder.xorMask(); SkTArray contourList; MakeContourList(contours, contourList, xorMask == kEvenOdd_PathOpsMask, xorOpMask == kEvenOdd_PathOpsMask); SkOpContour** currentPtr = contourList.begin(); if (!currentPtr) { return true; } SkOpContour** listEnd = contourList.end(); // find all intersections between segments do { SkOpContour** nextPtr = currentPtr; SkOpContour* current = *currentPtr++; if (current->containsCubics()) { AddSelfIntersectTs(current); } SkOpContour* next; do { next = *nextPtr++; } while (AddIntersectTs(current, next) && nextPtr != listEnd); } while (currentPtr != listEnd); // eat through coincident edges int total = 0; int index; for (index = 0; index < contourList.count(); ++index) { total += contourList[index]->segments().count(); } #if DEBUG_SHOW_WINDING SkOpContour::debugShowWindingValues(contourList); #endif CoincidenceCheck(&contourList, total); #if DEBUG_SHOW_WINDING SkOpContour::debugShowWindingValues(contourList); #endif FixOtherTIndex(&contourList); CheckEnds(&contourList); SortSegments(&contourList); #if DEBUG_ACTIVE_SPANS || DEBUG_ACTIVE_SPANS_FIRST_ONLY DebugShowActiveSpans(contourList); #endif // construct closed contours SkPathWriter wrapper(*result); bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper); { // if some edges could not be resolved, assemble remaining fragments SkPath temp; temp.setFillType(fillType); SkPathWriter assembled(temp); Assemble(wrapper, &assembled); *result = *assembled.nativePath(); result->setFillType(fillType); } return true; }