summaryrefslogtreecommitdiff
path: root/pathops/SkPathOpsCubic.cpp
blob: a89604f94cafa98ae9617868cf36bf86014151aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
/*
 * Copyright 2012 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */
#include "SkLineParameters.h"
#include "SkPathOpsCubic.h"
#include "SkPathOpsLine.h"
#include "SkPathOpsQuad.h"
#include "SkPathOpsRect.h"

const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework

// FIXME: cache keep the bounds and/or precision with the caller?
double SkDCubic::calcPrecision() const {
    SkDRect dRect;
    dRect.setBounds(*this);  // OPTIMIZATION: just use setRawBounds ?
    double width = dRect.fRight - dRect.fLeft;
    double height = dRect.fBottom - dRect.fTop;
    return (width > height ? width : height) / gPrecisionUnit;
}

bool SkDCubic::clockwise() const {
    double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY);
    for (int idx = 0; idx < 3; ++idx) {
        sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    }
    return sum <= 0;
}

void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
    *A = src[6];  // d
    *B = src[4] * 3;  // 3*c
    *C = src[2] * 3;  // 3*b
    *D = src[0];  // a
    *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
    *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
    *C -= 3 * *D;           // C = -3*a + 3*b
}

bool SkDCubic::controlsContainedByEnds() const {
    SkDVector startTan = fPts[1] - fPts[0];
    if (startTan.fX == 0 && startTan.fY == 0) {
        startTan = fPts[2] - fPts[0];
    }
    SkDVector endTan = fPts[2] - fPts[3];
    if (endTan.fX == 0 && endTan.fY == 0) {
        endTan = fPts[1] - fPts[3];
    }
    if (startTan.dot(endTan) >= 0) {
        return false;
    }
    SkDLine startEdge = {{fPts[0], fPts[0]}};
    startEdge[1].fX -= startTan.fY;
    startEdge[1].fY += startTan.fX;
    SkDLine endEdge = {{fPts[3], fPts[3]}};
    endEdge[1].fX -= endTan.fY;
    endEdge[1].fY += endTan.fX;
    double leftStart1 = startEdge.isLeft(fPts[1]);
    if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) {
        return false;
    }
    double leftEnd1 = endEdge.isLeft(fPts[1]);
    if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) {
        return false;
    }
    return leftStart1 * leftEnd1 >= 0;
}

bool SkDCubic::endsAreExtremaInXOrY() const {
    return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
            && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
            || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
            && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
}

bool SkDCubic::isLinear(int startIndex, int endIndex) const {
    SkLineParameters lineParameters;
    lineParameters.cubicEndPoints(*this, startIndex, endIndex);
    // FIXME: maybe it's possible to avoid this and compare non-normalized
    lineParameters.normalize();
    double distance = lineParameters.controlPtDistance(*this, 1);
    if (!approximately_zero(distance)) {
        return false;
    }
    distance = lineParameters.controlPtDistance(*this, 2);
    return approximately_zero(distance);
}

bool SkDCubic::monotonicInY() const {
    return between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
            && between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
}

bool SkDCubic::serpentine() const {
#if 0  // FIXME: enabling this fixes cubicOp114 but breaks cubicOp58d and cubicOp53d
    double tValues[2];
    // OPTIMIZATION : another case where caching the present of cubic inflections would be useful
    return findInflections(tValues) > 1;
#endif
    if (!controlsContainedByEnds()) {
        return false;
    }
    double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY);
    for (int idx = 0; idx < 2; ++idx) {
        wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    }
    double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY);
    for (int idx = 1; idx < 3; ++idx) {
        waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY);
    }
    return wiggle * waggle < 0;
}

// cubic roots

static const double PI = 3.141592653589793;

// from SkGeometry.cpp (and Numeric Solutions, 5.6)
int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
    double s[3];
    int realRoots = RootsReal(A, B, C, D, s);
    int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
    return foundRoots;
}

int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
#ifdef SK_DEBUG
    // create a string mathematica understands
    // GDB set print repe 15 # if repeated digits is a bother
    //     set print elements 400 # if line doesn't fit
    char str[1024];
    sk_bzero(str, sizeof(str));
    SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
            A, B, C, D);
    SkPathOpsDebug::MathematicaIze(str, sizeof(str));
#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
    SkDebugf("%s\n", str);
#endif
#endif
    if (approximately_zero(A)
            && approximately_zero_when_compared_to(A, B)
            && approximately_zero_when_compared_to(A, C)
            && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
        return SkDQuad::RootsReal(B, C, D, s);
    }
    if (approximately_zero_when_compared_to(D, A)
            && approximately_zero_when_compared_to(D, B)
            && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
        int num = SkDQuad::RootsReal(A, B, C, s);
        for (int i = 0; i < num; ++i) {
            if (approximately_zero(s[i])) {
                return num;
            }
        }
        s[num++] = 0;
        return num;
    }
    if (approximately_zero(A + B + C + D)) {  // 1 is one root
        int num = SkDQuad::RootsReal(A, A + B, -D, s);
        for (int i = 0; i < num; ++i) {
            if (AlmostDequalUlps(s[i], 1)) {
                return num;
            }
        }
        s[num++] = 1;
        return num;
    }
    double a, b, c;
    {
        double invA = 1 / A;
        a = B * invA;
        b = C * invA;
        c = D * invA;
    }
    double a2 = a * a;
    double Q = (a2 - b * 3) / 9;
    double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
    double R2 = R * R;
    double Q3 = Q * Q * Q;
    double R2MinusQ3 = R2 - Q3;
    double adiv3 = a / 3;
    double r;
    double* roots = s;
    if (R2MinusQ3 < 0) {   // we have 3 real roots
        double theta = acos(R / sqrt(Q3));
        double neg2RootQ = -2 * sqrt(Q);

        r = neg2RootQ * cos(theta / 3) - adiv3;
        *roots++ = r;

        r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
        if (!AlmostDequalUlps(s[0], r)) {
            *roots++ = r;
        }
        r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
        if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
            *roots++ = r;
        }
    } else {  // we have 1 real root
        double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
        double A = fabs(R) + sqrtR2MinusQ3;
        A = SkDCubeRoot(A);
        if (R > 0) {
            A = -A;
        }
        if (A != 0) {
            A += Q / A;
        }
        r = A - adiv3;
        *roots++ = r;
        if (AlmostDequalUlps(R2, Q3)) {
            r = -A / 2 - adiv3;
            if (!AlmostDequalUlps(s[0], r)) {
                *roots++ = r;
            }
        }
    }
    return static_cast<int>(roots - s);
}

// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
// c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
//       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
static double derivative_at_t(const double* src, double t) {
    double one_t = 1 - t;
    double a = src[0];
    double b = src[2];
    double c = src[4];
    double d = src[6];
    return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
}

// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
SkDVector SkDCubic::dxdyAtT(double t) const {
    SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
    return result;
}

// OPTIMIZE? share code with formulate_F1DotF2
int SkDCubic::findInflections(double tValues[]) const {
    double Ax = fPts[1].fX - fPts[0].fX;
    double Ay = fPts[1].fY - fPts[0].fY;
    double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
    double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
    double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
    double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
    return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
}

static void formulate_F1DotF2(const double src[], double coeff[4]) {
    double a = src[2] - src[0];
    double b = src[4] - 2 * src[2] + src[0];
    double c = src[6] + 3 * (src[2] - src[4]) - src[0];
    coeff[0] = c * c;
    coeff[1] = 3 * b * c;
    coeff[2] = 2 * b * b + c * a;
    coeff[3] = a * b;
}

/** SkDCubic'(t) = At^2 + Bt + C, where
    A = 3(-a + 3(b - c) + d)
    B = 6(a - 2b + c)
    C = 3(b - a)
    Solve for t, keeping only those that fit between 0 < t < 1
*/
int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) {
    // we divide A,B,C by 3 to simplify
    double A = d - a + 3*(b - c);
    double B = 2*(a - b - b + c);
    double C = b - a;

    return SkDQuad::RootsValidT(A, B, C, tValues);
}

/*  from SkGeometry.cpp
    Looking for F' dot F'' == 0

    A = b - a
    B = c - 2b + a
    C = d - 3c + 3b - a

    F' = 3Ct^2 + 6Bt + 3A
    F'' = 6Ct + 6B

    F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
*/
int SkDCubic::findMaxCurvature(double tValues[]) const {
    double coeffX[4], coeffY[4];
    int i;
    formulate_F1DotF2(&fPts[0].fX, coeffX);
    formulate_F1DotF2(&fPts[0].fY, coeffY);
    for (i = 0; i < 4; i++) {
        coeffX[i] = coeffX[i] + coeffY[i];
    }
    return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
}

SkDPoint SkDCubic::top(double startT, double endT) const {
    SkDCubic sub = subDivide(startT, endT);
    SkDPoint topPt = sub[0];
    if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) {
        topPt = sub[3];
    }
    double extremeTs[2];
    if (!sub.monotonicInY()) {
        int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs);
        for (int index = 0; index < roots; ++index) {
            double t = startT + (endT - startT) * extremeTs[index];
            SkDPoint mid = ptAtT(t);
            if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) {
                topPt = mid;
            }
        }
    }
    return topPt;
}

SkDPoint SkDCubic::ptAtT(double t) const {
    if (0 == t) {
        return fPts[0];
    }
    if (1 == t) {
        return fPts[3];
    }
    double one_t = 1 - t;
    double one_t2 = one_t * one_t;
    double a = one_t2 * one_t;
    double b = 3 * one_t2 * t;
    double t2 = t * t;
    double c = 3 * one_t * t2;
    double d = t2 * t;
    SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
            a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
    return result;
}

/*
 Given a cubic c, t1, and t2, find a small cubic segment.

 The new cubic is defined as points A, B, C, and D, where
 s1 = 1 - t1
 s2 = 1 - t2
 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2

 We don't have B or C. So We define two equations to isolate them.
 First, compute two reference T values 1/3 and 2/3 from t1 to t2:

 c(at (2*t1 + t2)/3) == E
 c(at (t1 + 2*t2)/3) == F

 Next, compute where those values must be if we know the values of B and C:

 _12   =  A*2/3 + B*1/3
 12_   =  A*1/3 + B*2/3
 _23   =  B*2/3 + C*1/3
 23_   =  B*1/3 + C*2/3
 _34   =  C*2/3 + D*1/3
 34_   =  C*1/3 + D*2/3
 _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
 123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
 _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
 234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
       =  A*8/27 + B*12/27 + C*6/27 + D*1/27
       =  E
 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
       =  A*1/27 + B*6/27 + C*12/27 + D*8/27
       =  F
 E*27  =  A*8    + B*12   + C*6     + D
 F*27  =  A      + B*6    + C*12    + D*8

Group the known values on one side:

 M       = E*27 - A*8 - D     = B*12 + C* 6
 N       = F*27 - A   - D*8   = B* 6 + C*12
 M*2 - N = B*18
 N*2 - M = C*18
 B       = (M*2 - N)/18
 C       = (N*2 - M)/18
 */

static double interp_cubic_coords(const double* src, double t) {
    double ab = SkDInterp(src[0], src[2], t);
    double bc = SkDInterp(src[2], src[4], t);
    double cd = SkDInterp(src[4], src[6], t);
    double abc = SkDInterp(ab, bc, t);
    double bcd = SkDInterp(bc, cd, t);
    double abcd = SkDInterp(abc, bcd, t);
    return abcd;
}

SkDCubic SkDCubic::subDivide(double t1, double t2) const {
    if (t1 == 0 || t2 == 1) {
        if (t1 == 0 && t2 == 1) {
            return *this;
        }
        SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
        SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
        return dst;
    }
    SkDCubic dst;
    double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
    double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
    double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
    double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
    double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
    double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
    double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
    double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
    double mx = ex * 27 - ax * 8 - dx;
    double my = ey * 27 - ay * 8 - dy;
    double nx = fx * 27 - ax - dx * 8;
    double ny = fy * 27 - ay - dy * 8;
    /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
    /* by = */ dst[1].fY = (my * 2 - ny) / 18;
    /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
    /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
    // FIXME: call align() ?
    return dst;
}

void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
    if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
        dstPt->fX = fPts[endIndex].fX;
    }
    if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
        dstPt->fY = fPts[endIndex].fY;
    }
}

void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
                         double t1, double t2, SkDPoint dst[2]) const {
    SkASSERT(t1 != t2);
#if 0
    double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3);
    double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3);
    double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3);
    double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3);
    double mx = ex * 27 - a.fX * 8 - d.fX;
    double my = ey * 27 - a.fY * 8 - d.fY;
    double nx = fx * 27 - a.fX - d.fX * 8;
    double ny = fy * 27 - a.fY - d.fY * 8;
    /* bx = */ dst[0].fX = (mx * 2 - nx) / 18;
    /* by = */ dst[0].fY = (my * 2 - ny) / 18;
    /* cx = */ dst[1].fX = (nx * 2 - mx) / 18;
    /* cy = */ dst[1].fY = (ny * 2 - my) / 18;
#else
    // this approach assumes that the control points computed directly are accurate enough
    SkDCubic sub = subDivide(t1, t2);
    dst[0] = sub[1] + (a - sub[0]);
    dst[1] = sub[2] + (d - sub[3]);
#endif
    if (t1 == 0 || t2 == 0) {
        align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
    }
    if (t1 == 1 || t2 == 1) {
        align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
    }
    if (AlmostBequalUlps(dst[0].fX, a.fX)) {
        dst[0].fX = a.fX;
    }
    if (AlmostBequalUlps(dst[0].fY, a.fY)) {
        dst[0].fY = a.fY;
    }
    if (AlmostBequalUlps(dst[1].fX, d.fX)) {
        dst[1].fX = d.fX;
    }
    if (AlmostBequalUlps(dst[1].fY, d.fY)) {
        dst[1].fY = d.fY;
    }
}

/* classic one t subdivision */
static void interp_cubic_coords(const double* src, double* dst, double t) {
    double ab = SkDInterp(src[0], src[2], t);
    double bc = SkDInterp(src[2], src[4], t);
    double cd = SkDInterp(src[4], src[6], t);
    double abc = SkDInterp(ab, bc, t);
    double bcd = SkDInterp(bc, cd, t);
    double abcd = SkDInterp(abc, bcd, t);

    dst[0] = src[0];
    dst[2] = ab;
    dst[4] = abc;
    dst[6] = abcd;
    dst[8] = bcd;
    dst[10] = cd;
    dst[12] = src[6];
}

SkDCubicPair SkDCubic::chopAt(double t) const {
    SkDCubicPair dst;
    if (t == 0.5) {
        dst.pts[0] = fPts[0];
        dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
        dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
        dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
        dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
        dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
        dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
        dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
        dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
        dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
        dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
        dst.pts[6] = fPts[3];
        return dst;
    }
    interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
    interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
    return dst;
}