summaryrefslogtreecommitdiff
path: root/system_wrappers/interface/scoped_ptr.h
diff options
context:
space:
mode:
Diffstat (limited to 'system_wrappers/interface/scoped_ptr.h')
-rw-r--r--system_wrappers/interface/scoped_ptr.h610
1 files changed, 538 insertions, 72 deletions
diff --git a/system_wrappers/interface/scoped_ptr.h b/system_wrappers/interface/scoped_ptr.h
index cfaf5cbe..a2a1b44e 100644
--- a/system_wrappers/interface/scoped_ptr.h
+++ b/system_wrappers/interface/scoped_ptr.h
@@ -1,118 +1,581 @@
-// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
-// Copyright (c) 2001, 2002 Peter Dimov
+/*
+ * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
+ *
+ * Use of this source code is governed by a BSD-style license
+ * that can be found in the LICENSE file in the root of the source
+ * tree. An additional intellectual property rights grant can be found
+ * in the file PATENTS. All contributing project authors may
+ * be found in the AUTHORS file in the root of the source tree.
+ */
+
+// Borrowed from Chromium's src/base/memory/scoped_ptr.h.
+
+// Scopers help you manage ownership of a pointer, helping you easily manage the
+// a pointer within a scope, and automatically destroying the pointer at the
+// end of a scope. There are two main classes you will use, which correspond
+// to the operators new/delete and new[]/delete[].
//
-// Permission to copy, use, modify, sell and distribute this software
-// is granted provided this copyright notice appears in all copies.
-// This software is provided "as is" without express or implied
-// warranty, and with no claim as to its suitability for any purpose.
+// Example usage (scoped_ptr<T>):
+// {
+// scoped_ptr<Foo> foo(new Foo("wee"));
+// } // foo goes out of scope, releasing the pointer with it.
//
-// See http://www.boost.org/libs/smart_ptr/scoped_ptr.htm for documentation.
+// {
+// scoped_ptr<Foo> foo; // No pointer managed.
+// foo.reset(new Foo("wee")); // Now a pointer is managed.
+// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
+// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
+// foo->Method(); // Foo::Method() called.
+// foo.get()->Method(); // Foo::Method() called.
+// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
+// // manages a pointer.
+// foo.reset(new Foo("wee4")); // foo manages a pointer again.
+// foo.reset(); // Foo("wee4") destroyed, foo no longer
+// // manages a pointer.
+// } // foo wasn't managing a pointer, so nothing was destroyed.
//
+// Example usage (scoped_ptr<T[]>):
+// {
+// scoped_ptr<Foo[]> foo(new Foo[100]);
+// foo.get()->Method(); // Foo::Method on the 0th element.
+// foo[10].Method(); // Foo::Method on the 10th element.
+// }
+//
+// These scopers also implement part of the functionality of C++11 unique_ptr
+// in that they are "movable but not copyable." You can use the scopers in
+// the parameter and return types of functions to signify ownership transfer
+// in to and out of a function. When calling a function that has a scoper
+// as the argument type, it must be called with the result of an analogous
+// scoper's Pass() function or another function that generates a temporary;
+// passing by copy will NOT work. Here is an example using scoped_ptr:
+//
+// void TakesOwnership(scoped_ptr<Foo> arg) {
+// // Do something with arg
+// }
+// scoped_ptr<Foo> CreateFoo() {
+// // No need for calling Pass() because we are constructing a temporary
+// // for the return value.
+// return scoped_ptr<Foo>(new Foo("new"));
+// }
+// scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
+// return arg.Pass();
+// }
+//
+// {
+// scoped_ptr<Foo> ptr(new Foo("yay")); // ptr manages Foo("yay").
+// TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay").
+// scoped_ptr<Foo> ptr2 = CreateFoo(); // ptr2 owns the return Foo.
+// scoped_ptr<Foo> ptr3 = // ptr3 now owns what was in ptr2.
+// PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL.
+// }
+//
+// Notice that if you do not call Pass() when returning from PassThru(), or
+// when invoking TakesOwnership(), the code will not compile because scopers
+// are not copyable; they only implement move semantics which require calling
+// the Pass() function to signify a destructive transfer of state. CreateFoo()
+// is different though because we are constructing a temporary on the return
+// line and thus can avoid needing to call Pass().
+//
+// Pass() properly handles upcast in initialization, i.e. you can use a
+// scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
+//
+// scoped_ptr<Foo> foo(new Foo());
+// scoped_ptr<FooParent> parent(foo.Pass());
+//
+// PassAs<>() should be used to upcast return value in return statement:
+//
+// scoped_ptr<Foo> CreateFoo() {
+// scoped_ptr<FooChild> result(new FooChild());
+// return result.PassAs<Foo>();
+// }
+//
+// Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
+// scoped_ptr<T[]>. This is because casting array pointers may not be safe.
-// scoped_ptr mimics a built-in pointer except that it guarantees deletion
-// of the object pointed to, either on destruction of the scoped_ptr or via
-// an explicit reset(). scoped_ptr is a simple solution for simple needs;
-// use shared_ptr or std::auto_ptr if your needs are more complex.
-
-// scoped_ptr_malloc added in by Google. When one of
-// these goes out of scope, instead of doing a delete or delete[], it
-// calls free(). scoped_ptr_malloc<char> is likely to see much more
-// use than any other specializations.
-
-// release() added in by Google. Use this to conditionally
-// transfer ownership of a heap-allocated object to the caller, usually on
-// method success.
#ifndef WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
#define WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
-#include <assert.h> // for assert
-#include <stddef.h> // for ptrdiff_t
-#include <stdlib.h> // for free() decl
+// This is an implementation designed to match the anticipated future TR2
+// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdlib.h>
-#ifdef _WIN32
-namespace std { using ::ptrdiff_t; };
-#endif // _WIN32
+#include <algorithm> // For std::swap().
+
+#include "webrtc/system_wrappers/interface/compile_assert.h"
+#include "webrtc/system_wrappers/interface/constructor_magic.h"
+#include "webrtc/system_wrappers/interface/move.h"
+#include "webrtc/system_wrappers/interface/template_util.h"
+#include "webrtc/typedefs.h"
namespace webrtc {
-template <typename T>
-class scoped_ptr {
+// Function object which deletes its parameter, which must be a pointer.
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
+// invokes 'delete'. The default deleter for scoped_ptr<T>.
+template <class T>
+struct DefaultDeleter {
+ DefaultDeleter() {}
+ template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
+ // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
+ // if U* is implicitly convertible to T* and U is not an array type.
+ //
+ // Correct implementation should use SFINAE to disable this
+ // constructor. However, since there are no other 1-argument constructors,
+ // using a COMPILE_ASSERT() based on is_convertible<> and requiring
+ // complete types is simpler and will cause compile failures for equivalent
+ // misuses.
+ //
+ // Note, the is_convertible<U*, T*> check also ensures that U is not an
+ // array. T is guaranteed to be a non-array, so any U* where U is an array
+ // cannot convert to T*.
+ enum { T_must_be_complete = sizeof(T) };
+ enum { U_must_be_complete = sizeof(U) };
+ COMPILE_ASSERT((webrtc::is_convertible<U*, T*>::value),
+ U_ptr_must_implicitly_convert_to_T_ptr);
+ }
+ inline void operator()(T* ptr) const {
+ enum { type_must_be_complete = sizeof(T) };
+ delete ptr;
+ }
+};
+
+// Specialization of DefaultDeleter for array types.
+template <class T>
+struct DefaultDeleter<T[]> {
+ inline void operator()(T* ptr) const {
+ enum { type_must_be_complete = sizeof(T) };
+ delete[] ptr;
+ }
+
private:
+ // Disable this operator for any U != T because it is undefined to execute
+ // an array delete when the static type of the array mismatches the dynamic
+ // type.
+ //
+ // References:
+ // C++98 [expr.delete]p3
+ // http://cplusplus.github.com/LWG/lwg-defects.html#938
+ template <typename U> void operator()(U* array) const;
+};
- T* ptr;
+template <class T, int n>
+struct DefaultDeleter<T[n]> {
+ // Never allow someone to declare something like scoped_ptr<int[10]>.
+ COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
+};
- scoped_ptr(scoped_ptr const &);
- scoped_ptr & operator=(scoped_ptr const &);
+// Function object which invokes 'free' on its parameter, which must be
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
+//
+// scoped_ptr<int, webrtc::FreeDeleter> foo_ptr(
+// static_cast<int*>(malloc(sizeof(int))));
+struct FreeDeleter {
+ inline void operator()(void* ptr) const {
+ free(ptr);
+ }
+};
+namespace internal {
+
+// Minimal implementation of the core logic of scoped_ptr, suitable for
+// reuse in both scoped_ptr and its specializations.
+template <class T, class D>
+class scoped_ptr_impl {
public:
+ explicit scoped_ptr_impl(T* p) : data_(p) { }
+
+ // Initializer for deleters that have data parameters.
+ scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
+
+ // Templated constructor that destructively takes the value from another
+ // scoped_ptr_impl.
+ template <typename U, typename V>
+ scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
+ : data_(other->release(), other->get_deleter()) {
+ // We do not support move-only deleters. We could modify our move
+ // emulation to have webrtc::subtle::move() and webrtc::subtle::forward()
+ // functions that are imperfect emulations of their C++11 equivalents,
+ // but until there's a requirement, just assume deleters are copyable.
+ }
- typedef T element_type;
+ template <typename U, typename V>
+ void TakeState(scoped_ptr_impl<U, V>* other) {
+ // See comment in templated constructor above regarding lack of support
+ // for move-only deleters.
+ reset(other->release());
+ get_deleter() = other->get_deleter();
+ }
- explicit scoped_ptr(T* p = NULL): ptr(p) {}
+ ~scoped_ptr_impl() {
+ if (data_.ptr != NULL) {
+ // Not using get_deleter() saves one function call in non-optimized
+ // builds.
+ static_cast<D&>(data_)(data_.ptr);
+ }
+ }
- ~scoped_ptr() {
- typedef char type_must_be_complete[sizeof(T)];
- delete ptr;
+ void reset(T* p) {
+ // This is a self-reset, which is no longer allowed: http://crbug.com/162971
+ if (p != NULL && p == data_.ptr)
+ abort();
+
+ // Note that running data_.ptr = p can lead to undefined behavior if
+ // get_deleter()(get()) deletes this. In order to pevent this, reset()
+ // should update the stored pointer before deleting its old value.
+ //
+ // However, changing reset() to use that behavior may cause current code to
+ // break in unexpected ways. If the destruction of the owned object
+ // dereferences the scoped_ptr when it is destroyed by a call to reset(),
+ // then it will incorrectly dispatch calls to |p| rather than the original
+ // value of |data_.ptr|.
+ //
+ // During the transition period, set the stored pointer to NULL while
+ // deleting the object. Eventually, this safety check will be removed to
+ // prevent the scenario initially described from occuring and
+ // http://crbug.com/176091 can be closed.
+ T* old = data_.ptr;
+ data_.ptr = NULL;
+ if (old != NULL)
+ static_cast<D&>(data_)(old);
+ data_.ptr = p;
}
- void reset(T* p = NULL) {
- typedef char type_must_be_complete[sizeof(T)];
+ T* get() const { return data_.ptr; }
- if (ptr != p) {
- T* obj = ptr;
- ptr = p;
- // Delete last, in case obj destructor indirectly results in ~scoped_ptr
- delete obj;
- }
+ D& get_deleter() { return data_; }
+ const D& get_deleter() const { return data_; }
+
+ void swap(scoped_ptr_impl& p2) {
+ // Standard swap idiom: 'using std::swap' ensures that std::swap is
+ // present in the overload set, but we call swap unqualified so that
+ // any more-specific overloads can be used, if available.
+ using std::swap;
+ swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
+ swap(data_.ptr, p2.data_.ptr);
}
- T& operator*() const {
- assert(ptr != NULL);
- return *ptr;
+ T* release() {
+ T* old_ptr = data_.ptr;
+ data_.ptr = NULL;
+ return old_ptr;
}
- T* operator->() const {
- assert(ptr != NULL);
- return ptr;
+ private:
+ // Needed to allow type-converting constructor.
+ template <typename U, typename V> friend class scoped_ptr_impl;
+
+ // Use the empty base class optimization to allow us to have a D
+ // member, while avoiding any space overhead for it when D is an
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
+ // discussion of this technique.
+ struct Data : public D {
+ explicit Data(T* ptr_in) : ptr(ptr_in) {}
+ Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
+ T* ptr;
+ };
+
+ Data data_;
+
+ DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
+};
+
+} // namespace internal
+
+// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
+// automatically deletes the pointer it holds (if any).
+// That is, scoped_ptr<T> owns the T object that it points to.
+// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
+// Also like T*, scoped_ptr<T> is thread-compatible, and once you
+// dereference it, you get the thread safety guarantees of T.
+//
+// The size of scoped_ptr is small. On most compilers, when using the
+// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
+// increase the size proportional to whatever state they need to have. See
+// comments inside scoped_ptr_impl<> for details.
+//
+// Current implementation targets having a strict subset of C++11's
+// unique_ptr<> features. Known deficiencies include not supporting move-only
+// deleteres, function pointers as deleters, and deleters with reference
+// types.
+template <class T, class D = webrtc::DefaultDeleter<T> >
+class scoped_ptr {
+ MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
+
+ public:
+ // The element and deleter types.
+ typedef T element_type;
+ typedef D deleter_type;
+
+ // Constructor. Defaults to initializing with NULL.
+ scoped_ptr() : impl_(NULL) { }
+
+ // Constructor. Takes ownership of p.
+ explicit scoped_ptr(element_type* p) : impl_(p) { }
+
+ // Constructor. Allows initialization of a stateful deleter.
+ scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
+
+ // Constructor. Allows construction from a scoped_ptr rvalue for a
+ // convertible type and deleter.
+ //
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
+ // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
+ // has different post-conditions if D is a reference type. Since this
+ // implementation does not support deleters with reference type,
+ // we do not need a separate move constructor allowing us to avoid one
+ // use of SFINAE. You only need to care about this if you modify the
+ // implementation of scoped_ptr.
+ template <typename U, typename V>
+ scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
+ COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
}
- T* get() const {
- return ptr;
+ // Constructor. Move constructor for C++03 move emulation of this type.
+ scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
+
+ // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
+ // type and deleter.
+ //
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
+ // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
+ // form has different requirements on for move-only Deleters. Since this
+ // implementation does not support move-only Deleters, we do not need a
+ // separate move assignment operator allowing us to avoid one use of SFINAE.
+ // You only need to care about this if you modify the implementation of
+ // scoped_ptr.
+ template <typename U, typename V>
+ scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
+ COMPILE_ASSERT(!webrtc::is_array<U>::value, U_cannot_be_an_array);
+ impl_.TakeState(&rhs.impl_);
+ return *this;
}
- void swap(scoped_ptr & b) {
- T* tmp = b.ptr;
- b.ptr = ptr;
- ptr = tmp;
+ // Reset. Deletes the currently owned object, if any.
+ // Then takes ownership of a new object, if given.
+ void reset(element_type* p = NULL) { impl_.reset(p); }
+
+ // Accessors to get the owned object.
+ // operator* and operator-> will assert() if there is no current object.
+ element_type& operator*() const {
+ assert(impl_.get() != NULL);
+ return *impl_.get();
}
+ element_type* operator->() const {
+ assert(impl_.get() != NULL);
+ return impl_.get();
+ }
+ element_type* get() const { return impl_.get(); }
+
+ // Access to the deleter.
+ deleter_type& get_deleter() { return impl_.get_deleter(); }
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+ // implicitly convertible to a real bool (which is dangerous).
+ //
+ // Note that this trick is only safe when the == and != operators
+ // are declared explicitly, as otherwise "scoped_ptr1 ==
+ // scoped_ptr2" will compile but do the wrong thing (i.e., convert
+ // to Testable and then do the comparison).
+ private:
+ typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
+ scoped_ptr::*Testable;
- T* release() {
- T* tmp = ptr;
- ptr = NULL;
- return tmp;
+ public:
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
+
+ // Comparison operators.
+ // These return whether two scoped_ptr refer to the same object, not just to
+ // two different but equal objects.
+ bool operator==(const element_type* p) const { return impl_.get() == p; }
+ bool operator!=(const element_type* p) const { return impl_.get() != p; }
+
+ // Swap two scoped pointers.
+ void swap(scoped_ptr& p2) {
+ impl_.swap(p2.impl_);
}
- T** accept() {
- if (ptr) {
- delete ptr;
- ptr = NULL;
- }
- return &ptr;
+ // Release a pointer.
+ // The return value is the current pointer held by this object.
+ // If this object holds a NULL pointer, the return value is NULL.
+ // After this operation, this object will hold a NULL pointer,
+ // and will not own the object any more.
+ element_type* release() WARN_UNUSED_RESULT {
+ return impl_.release();
}
- T** use() {
- return &ptr;
+ // C++98 doesn't support functions templates with default parameters which
+ // makes it hard to write a PassAs() that understands converting the deleter
+ // while preserving simple calling semantics.
+ //
+ // Until there is a use case for PassAs() with custom deleters, just ignore
+ // the custom deleter.
+ template <typename PassAsType>
+ scoped_ptr<PassAsType> PassAs() {
+ return scoped_ptr<PassAsType>(Pass());
}
+
+ private:
+ // Needed to reach into |impl_| in the constructor.
+ template <typename U, typename V> friend class scoped_ptr;
+ webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
+
+ // Forbidden for API compatibility with std::unique_ptr.
+ explicit scoped_ptr(int disallow_construction_from_null);
+
+ // Forbid comparison of scoped_ptr types. If U != T, it totally
+ // doesn't make sense, and if U == T, it still doesn't make sense
+ // because you should never have the same object owned by two different
+ // scoped_ptrs.
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const;
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
};
-template<typename T> inline
-void swap(scoped_ptr<T>& a, scoped_ptr<T>& b) {
- a.swap(b);
+template <class T, class D>
+class scoped_ptr<T[], D> {
+ MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
+
+ public:
+ // The element and deleter types.
+ typedef T element_type;
+ typedef D deleter_type;
+
+ // Constructor. Defaults to initializing with NULL.
+ scoped_ptr() : impl_(NULL) { }
+
+ // Constructor. Stores the given array. Note that the argument's type
+ // must exactly match T*. In particular:
+ // - it cannot be a pointer to a type derived from T, because it is
+ // inherently unsafe in the general case to access an array through a
+ // pointer whose dynamic type does not match its static type (eg., if
+ // T and the derived types had different sizes access would be
+ // incorrectly calculated). Deletion is also always undefined
+ // (C++98 [expr.delete]p3). If you're doing this, fix your code.
+ // - it cannot be NULL, because NULL is an integral expression, not a
+ // pointer to T. Use the no-argument version instead of explicitly
+ // passing NULL.
+ // - it cannot be const-qualified differently from T per unique_ptr spec
+ // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
+ // to work around this may use implicit_cast<const T*>().
+ // However, because of the first bullet in this comment, users MUST
+ // NOT use implicit_cast<Base*>() to upcast the static type of the array.
+ explicit scoped_ptr(element_type* array) : impl_(array) { }
+
+ // Constructor. Move constructor for C++03 move emulation of this type.
+ scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
+
+ // operator=. Move operator= for C++03 move emulation of this type.
+ scoped_ptr& operator=(RValue rhs) {
+ impl_.TakeState(&rhs.object->impl_);
+ return *this;
+ }
+
+ // Reset. Deletes the currently owned array, if any.
+ // Then takes ownership of a new object, if given.
+ void reset(element_type* array = NULL) { impl_.reset(array); }
+
+ // Accessors to get the owned array.
+ element_type& operator[](size_t i) const {
+ assert(impl_.get() != NULL);
+ return impl_.get()[i];
+ }
+ element_type* get() const { return impl_.get(); }
+
+ // Access to the deleter.
+ deleter_type& get_deleter() { return impl_.get_deleter(); }
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+ // implicitly convertible to a real bool (which is dangerous).
+ private:
+ typedef webrtc::internal::scoped_ptr_impl<element_type, deleter_type>
+ scoped_ptr::*Testable;
+
+ public:
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
+
+ // Comparison operators.
+ // These return whether two scoped_ptr refer to the same object, not just to
+ // two different but equal objects.
+ bool operator==(element_type* array) const { return impl_.get() == array; }
+ bool operator!=(element_type* array) const { return impl_.get() != array; }
+
+ // Swap two scoped pointers.
+ void swap(scoped_ptr& p2) {
+ impl_.swap(p2.impl_);
+ }
+
+ // Release a pointer.
+ // The return value is the current pointer held by this object.
+ // If this object holds a NULL pointer, the return value is NULL.
+ // After this operation, this object will hold a NULL pointer,
+ // and will not own the object any more.
+ element_type* release() WARN_UNUSED_RESULT {
+ return impl_.release();
+ }
+
+ private:
+ // Force element_type to be a complete type.
+ enum { type_must_be_complete = sizeof(element_type) };
+
+ // Actually hold the data.
+ webrtc::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
+
+ // Disable initialization from any type other than element_type*, by
+ // providing a constructor that matches such an initialization, but is
+ // private and has no definition. This is disabled because it is not safe to
+ // call delete[] on an array whose static type does not match its dynamic
+ // type.
+ template <typename U> explicit scoped_ptr(U* array);
+ explicit scoped_ptr(int disallow_construction_from_null);
+
+ // Disable reset() from any type other than element_type*, for the same
+ // reasons as the constructor above.
+ template <typename U> void reset(U* array);
+ void reset(int disallow_reset_from_null);
+
+ // Forbid comparison of scoped_ptr types. If U != T, it totally
+ // doesn't make sense, and if U == T, it still doesn't make sense
+ // because you should never have the same object owned by two different
+ // scoped_ptrs.
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const;
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
+};
+
+} // namespace webrtc
+
+// Free functions
+template <class T, class D>
+void swap(webrtc::scoped_ptr<T, D>& p1, webrtc::scoped_ptr<T, D>& p2) {
+ p1.swap(p2);
+}
+
+template <class T, class D>
+bool operator==(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
+ return p1 == p2.get();
}
+template <class T, class D>
+bool operator!=(T* p1, const webrtc::scoped_ptr<T, D>& p2) {
+ return p1 != p2.get();
+}
+// A function to convert T* into webrtc::scoped_ptr<T>
+// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
+// for webrtc::scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
+template <typename T>
+webrtc::scoped_ptr<T> make_scoped_ptr(T* ptr) {
+ return webrtc::scoped_ptr<T>(ptr);
+}
+namespace webrtc {
+// DEPRECATED: Use scoped_ptr<T[]> instead.
+// TODO(ajm): Remove scoped_array.
+//
// scoped_array extends scoped_ptr to arrays. Deletion of the array pointed to
// is guaranteed, either on destruction of the scoped_array or via an explicit
// reset(). Use shared_array or std::vector if your needs are more complex.
@@ -184,6 +647,9 @@ void swap(scoped_array<T>& a, scoped_array<T>& b) {
a.swap(b);
}
+// DEPRECATED: Use scoped_ptr<C, webrtc::FreeDeleter> instead.
+// TODO(ajm): Remove scoped_ptr_malloc.
+//
// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
// second template argument, the function used to free the object.
@@ -254,4 +720,4 @@ void swap(scoped_ptr_malloc<T,FF>& a, scoped_ptr_malloc<T,FF>& b) {
} // namespace webrtc
-#endif // #ifndef WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_
+#endif // WEBRTC_SYSTEM_WRAPPERS_INTERFACE_SCOPED_PTR_H_