/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * This file contains the resampling functions for 22 kHz. * The description header can be found in signal_processing_library.h * */ #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" #include "webrtc/common_audio/signal_processing/resample_by_2_internal.h" // Declaration of internally used functions static void WebRtcSpl_32khzTo22khzIntToShort(const int32_t *In, int16_t *Out, int32_t K); void WebRtcSpl_32khzTo22khzIntToInt(const int32_t *In, int32_t *Out, int32_t K); // interpolation coefficients static const int16_t kCoefficients32To22[5][9] = { {127, -712, 2359, -6333, 23456, 16775, -3695, 945, -154}, {-39, 230, -830, 2785, 32366, -2324, 760, -218, 38}, {117, -663, 2222, -6133, 26634, 13070, -3174, 831, -137}, {-77, 457, -1677, 5958, 31175, -4136, 1405, -408, 71}, { 98, -560, 1900, -5406, 29240, 9423, -2480, 663, -110} }; ////////////////////// // 22 kHz -> 16 kHz // ////////////////////// // number of subblocks; options: 1, 2, 4, 5, 10 #define SUB_BLOCKS_22_16 5 // 22 -> 16 resampler void WebRtcSpl_Resample22khzTo16khz(const int16_t* in, int16_t* out, WebRtcSpl_State22khzTo16khz* state, int32_t* tmpmem) { int k; // process two blocks of 10/SUB_BLOCKS_22_16 ms (to reduce temp buffer size) for (k = 0; k < SUB_BLOCKS_22_16; k++) { ///// 22 --> 44 ///// // int16_t in[220/SUB_BLOCKS_22_16] // int32_t out[440/SUB_BLOCKS_22_16] ///// WebRtcSpl_UpBy2ShortToInt(in, 220 / SUB_BLOCKS_22_16, tmpmem + 16, state->S_22_44); ///// 44 --> 32 ///// // int32_t in[440/SUB_BLOCKS_22_16] // int32_t out[320/SUB_BLOCKS_22_16] ///// // copy state to and from input array tmpmem[8] = state->S_44_32[0]; tmpmem[9] = state->S_44_32[1]; tmpmem[10] = state->S_44_32[2]; tmpmem[11] = state->S_44_32[3]; tmpmem[12] = state->S_44_32[4]; tmpmem[13] = state->S_44_32[5]; tmpmem[14] = state->S_44_32[6]; tmpmem[15] = state->S_44_32[7]; state->S_44_32[0] = tmpmem[440 / SUB_BLOCKS_22_16 + 8]; state->S_44_32[1] = tmpmem[440 / SUB_BLOCKS_22_16 + 9]; state->S_44_32[2] = tmpmem[440 / SUB_BLOCKS_22_16 + 10]; state->S_44_32[3] = tmpmem[440 / SUB_BLOCKS_22_16 + 11]; state->S_44_32[4] = tmpmem[440 / SUB_BLOCKS_22_16 + 12]; state->S_44_32[5] = tmpmem[440 / SUB_BLOCKS_22_16 + 13]; state->S_44_32[6] = tmpmem[440 / SUB_BLOCKS_22_16 + 14]; state->S_44_32[7] = tmpmem[440 / SUB_BLOCKS_22_16 + 15]; WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 40 / SUB_BLOCKS_22_16); ///// 32 --> 16 ///// // int32_t in[320/SUB_BLOCKS_22_16] // int32_t out[160/SUB_BLOCKS_22_16] ///// WebRtcSpl_DownBy2IntToShort(tmpmem, 320 / SUB_BLOCKS_22_16, out, state->S_32_16); // move input/output pointers 10/SUB_BLOCKS_22_16 ms seconds ahead in += 220 / SUB_BLOCKS_22_16; out += 160 / SUB_BLOCKS_22_16; } } // initialize state of 22 -> 16 resampler void WebRtcSpl_ResetResample22khzTo16khz(WebRtcSpl_State22khzTo16khz* state) { int k; for (k = 0; k < 8; k++) { state->S_22_44[k] = 0; state->S_44_32[k] = 0; state->S_32_16[k] = 0; } } ////////////////////// // 16 kHz -> 22 kHz // ////////////////////// // number of subblocks; options: 1, 2, 4, 5, 10 #define SUB_BLOCKS_16_22 4 // 16 -> 22 resampler void WebRtcSpl_Resample16khzTo22khz(const int16_t* in, int16_t* out, WebRtcSpl_State16khzTo22khz* state, int32_t* tmpmem) { int k; // process two blocks of 10/SUB_BLOCKS_16_22 ms (to reduce temp buffer size) for (k = 0; k < SUB_BLOCKS_16_22; k++) { ///// 16 --> 32 ///// // int16_t in[160/SUB_BLOCKS_16_22] // int32_t out[320/SUB_BLOCKS_16_22] ///// WebRtcSpl_UpBy2ShortToInt(in, 160 / SUB_BLOCKS_16_22, tmpmem + 8, state->S_16_32); ///// 32 --> 22 ///// // int32_t in[320/SUB_BLOCKS_16_22] // int32_t out[220/SUB_BLOCKS_16_22] ///// // copy state to and from input array tmpmem[0] = state->S_32_22[0]; tmpmem[1] = state->S_32_22[1]; tmpmem[2] = state->S_32_22[2]; tmpmem[3] = state->S_32_22[3]; tmpmem[4] = state->S_32_22[4]; tmpmem[5] = state->S_32_22[5]; tmpmem[6] = state->S_32_22[6]; tmpmem[7] = state->S_32_22[7]; state->S_32_22[0] = tmpmem[320 / SUB_BLOCKS_16_22]; state->S_32_22[1] = tmpmem[320 / SUB_BLOCKS_16_22 + 1]; state->S_32_22[2] = tmpmem[320 / SUB_BLOCKS_16_22 + 2]; state->S_32_22[3] = tmpmem[320 / SUB_BLOCKS_16_22 + 3]; state->S_32_22[4] = tmpmem[320 / SUB_BLOCKS_16_22 + 4]; state->S_32_22[5] = tmpmem[320 / SUB_BLOCKS_16_22 + 5]; state->S_32_22[6] = tmpmem[320 / SUB_BLOCKS_16_22 + 6]; state->S_32_22[7] = tmpmem[320 / SUB_BLOCKS_16_22 + 7]; WebRtcSpl_32khzTo22khzIntToShort(tmpmem, out, 20 / SUB_BLOCKS_16_22); // move input/output pointers 10/SUB_BLOCKS_16_22 ms seconds ahead in += 160 / SUB_BLOCKS_16_22; out += 220 / SUB_BLOCKS_16_22; } } // initialize state of 16 -> 22 resampler void WebRtcSpl_ResetResample16khzTo22khz(WebRtcSpl_State16khzTo22khz* state) { int k; for (k = 0; k < 8; k++) { state->S_16_32[k] = 0; state->S_32_22[k] = 0; } } ////////////////////// // 22 kHz -> 8 kHz // ////////////////////// // number of subblocks; options: 1, 2, 5, 10 #define SUB_BLOCKS_22_8 2 // 22 -> 8 resampler void WebRtcSpl_Resample22khzTo8khz(const int16_t* in, int16_t* out, WebRtcSpl_State22khzTo8khz* state, int32_t* tmpmem) { int k; // process two blocks of 10/SUB_BLOCKS_22_8 ms (to reduce temp buffer size) for (k = 0; k < SUB_BLOCKS_22_8; k++) { ///// 22 --> 22 lowpass ///// // int16_t in[220/SUB_BLOCKS_22_8] // int32_t out[220/SUB_BLOCKS_22_8] ///// WebRtcSpl_LPBy2ShortToInt(in, 220 / SUB_BLOCKS_22_8, tmpmem + 16, state->S_22_22); ///// 22 --> 16 ///// // int32_t in[220/SUB_BLOCKS_22_8] // int32_t out[160/SUB_BLOCKS_22_8] ///// // copy state to and from input array tmpmem[8] = state->S_22_16[0]; tmpmem[9] = state->S_22_16[1]; tmpmem[10] = state->S_22_16[2]; tmpmem[11] = state->S_22_16[3]; tmpmem[12] = state->S_22_16[4]; tmpmem[13] = state->S_22_16[5]; tmpmem[14] = state->S_22_16[6]; tmpmem[15] = state->S_22_16[7]; state->S_22_16[0] = tmpmem[220 / SUB_BLOCKS_22_8 + 8]; state->S_22_16[1] = tmpmem[220 / SUB_BLOCKS_22_8 + 9]; state->S_22_16[2] = tmpmem[220 / SUB_BLOCKS_22_8 + 10]; state->S_22_16[3] = tmpmem[220 / SUB_BLOCKS_22_8 + 11]; state->S_22_16[4] = tmpmem[220 / SUB_BLOCKS_22_8 + 12]; state->S_22_16[5] = tmpmem[220 / SUB_BLOCKS_22_8 + 13]; state->S_22_16[6] = tmpmem[220 / SUB_BLOCKS_22_8 + 14]; state->S_22_16[7] = tmpmem[220 / SUB_BLOCKS_22_8 + 15]; WebRtcSpl_Resample44khzTo32khz(tmpmem + 8, tmpmem, 20 / SUB_BLOCKS_22_8); ///// 16 --> 8 ///// // int32_t in[160/SUB_BLOCKS_22_8] // int32_t out[80/SUB_BLOCKS_22_8] ///// WebRtcSpl_DownBy2IntToShort(tmpmem, 160 / SUB_BLOCKS_22_8, out, state->S_16_8); // move input/output pointers 10/SUB_BLOCKS_22_8 ms seconds ahead in += 220 / SUB_BLOCKS_22_8; out += 80 / SUB_BLOCKS_22_8; } } // initialize state of 22 -> 8 resampler void WebRtcSpl_ResetResample22khzTo8khz(WebRtcSpl_State22khzTo8khz* state) { int k; for (k = 0; k < 8; k++) { state->S_22_22[k] = 0; state->S_22_22[k + 8] = 0; state->S_22_16[k] = 0; state->S_16_8[k] = 0; } } ////////////////////// // 8 kHz -> 22 kHz // ////////////////////// // number of subblocks; options: 1, 2, 5, 10 #define SUB_BLOCKS_8_22 2 // 8 -> 22 resampler void WebRtcSpl_Resample8khzTo22khz(const int16_t* in, int16_t* out, WebRtcSpl_State8khzTo22khz* state, int32_t* tmpmem) { int k; // process two blocks of 10/SUB_BLOCKS_8_22 ms (to reduce temp buffer size) for (k = 0; k < SUB_BLOCKS_8_22; k++) { ///// 8 --> 16 ///// // int16_t in[80/SUB_BLOCKS_8_22] // int32_t out[160/SUB_BLOCKS_8_22] ///// WebRtcSpl_UpBy2ShortToInt(in, 80 / SUB_BLOCKS_8_22, tmpmem + 18, state->S_8_16); ///// 16 --> 11 ///// // int32_t in[160/SUB_BLOCKS_8_22] // int32_t out[110/SUB_BLOCKS_8_22] ///// // copy state to and from input array tmpmem[10] = state->S_16_11[0]; tmpmem[11] = state->S_16_11[1]; tmpmem[12] = state->S_16_11[2]; tmpmem[13] = state->S_16_11[3]; tmpmem[14] = state->S_16_11[4]; tmpmem[15] = state->S_16_11[5]; tmpmem[16] = state->S_16_11[6]; tmpmem[17] = state->S_16_11[7]; state->S_16_11[0] = tmpmem[160 / SUB_BLOCKS_8_22 + 10]; state->S_16_11[1] = tmpmem[160 / SUB_BLOCKS_8_22 + 11]; state->S_16_11[2] = tmpmem[160 / SUB_BLOCKS_8_22 + 12]; state->S_16_11[3] = tmpmem[160 / SUB_BLOCKS_8_22 + 13]; state->S_16_11[4] = tmpmem[160 / SUB_BLOCKS_8_22 + 14]; state->S_16_11[5] = tmpmem[160 / SUB_BLOCKS_8_22 + 15]; state->S_16_11[6] = tmpmem[160 / SUB_BLOCKS_8_22 + 16]; state->S_16_11[7] = tmpmem[160 / SUB_BLOCKS_8_22 + 17]; WebRtcSpl_32khzTo22khzIntToInt(tmpmem + 10, tmpmem, 10 / SUB_BLOCKS_8_22); ///// 11 --> 22 ///// // int32_t in[110/SUB_BLOCKS_8_22] // int16_t out[220/SUB_BLOCKS_8_22] ///// WebRtcSpl_UpBy2IntToShort(tmpmem, 110 / SUB_BLOCKS_8_22, out, state->S_11_22); // move input/output pointers 10/SUB_BLOCKS_8_22 ms seconds ahead in += 80 / SUB_BLOCKS_8_22; out += 220 / SUB_BLOCKS_8_22; } } // initialize state of 8 -> 22 resampler void WebRtcSpl_ResetResample8khzTo22khz(WebRtcSpl_State8khzTo22khz* state) { int k; for (k = 0; k < 8; k++) { state->S_8_16[k] = 0; state->S_16_11[k] = 0; state->S_11_22[k] = 0; } } // compute two inner-products and store them to output array static void WebRtcSpl_DotProdIntToInt(const int32_t* in1, const int32_t* in2, const int16_t* coef_ptr, int32_t* out1, int32_t* out2) { int32_t tmp1 = 16384; int32_t tmp2 = 16384; int16_t coef; coef = coef_ptr[0]; tmp1 += coef * in1[0]; tmp2 += coef * in2[-0]; coef = coef_ptr[1]; tmp1 += coef * in1[1]; tmp2 += coef * in2[-1]; coef = coef_ptr[2]; tmp1 += coef * in1[2]; tmp2 += coef * in2[-2]; coef = coef_ptr[3]; tmp1 += coef * in1[3]; tmp2 += coef * in2[-3]; coef = coef_ptr[4]; tmp1 += coef * in1[4]; tmp2 += coef * in2[-4]; coef = coef_ptr[5]; tmp1 += coef * in1[5]; tmp2 += coef * in2[-5]; coef = coef_ptr[6]; tmp1 += coef * in1[6]; tmp2 += coef * in2[-6]; coef = coef_ptr[7]; tmp1 += coef * in1[7]; tmp2 += coef * in2[-7]; coef = coef_ptr[8]; *out1 = tmp1 + coef * in1[8]; *out2 = tmp2 + coef * in2[-8]; } // compute two inner-products and store them to output array static void WebRtcSpl_DotProdIntToShort(const int32_t* in1, const int32_t* in2, const int16_t* coef_ptr, int16_t* out1, int16_t* out2) { int32_t tmp1 = 16384; int32_t tmp2 = 16384; int16_t coef; coef = coef_ptr[0]; tmp1 += coef * in1[0]; tmp2 += coef * in2[-0]; coef = coef_ptr[1]; tmp1 += coef * in1[1]; tmp2 += coef * in2[-1]; coef = coef_ptr[2]; tmp1 += coef * in1[2]; tmp2 += coef * in2[-2]; coef = coef_ptr[3]; tmp1 += coef * in1[3]; tmp2 += coef * in2[-3]; coef = coef_ptr[4]; tmp1 += coef * in1[4]; tmp2 += coef * in2[-4]; coef = coef_ptr[5]; tmp1 += coef * in1[5]; tmp2 += coef * in2[-5]; coef = coef_ptr[6]; tmp1 += coef * in1[6]; tmp2 += coef * in2[-6]; coef = coef_ptr[7]; tmp1 += coef * in1[7]; tmp2 += coef * in2[-7]; coef = coef_ptr[8]; tmp1 += coef * in1[8]; tmp2 += coef * in2[-8]; // scale down, round and saturate tmp1 >>= 15; if (tmp1 > (int32_t)0x00007FFF) tmp1 = 0x00007FFF; if (tmp1 < (int32_t)0xFFFF8000) tmp1 = 0xFFFF8000; tmp2 >>= 15; if (tmp2 > (int32_t)0x00007FFF) tmp2 = 0x00007FFF; if (tmp2 < (int32_t)0xFFFF8000) tmp2 = 0xFFFF8000; *out1 = (int16_t)tmp1; *out2 = (int16_t)tmp2; } // Resampling ratio: 11/16 // input: int32_t (normalized, not saturated) :: size 16 * K // output: int32_t (shifted 15 positions to the left, + offset 16384) :: size 11 * K // K: Number of blocks void WebRtcSpl_32khzTo22khzIntToInt(const int32_t* In, int32_t* Out, int32_t K) { ///////////////////////////////////////////////////////////// // Filter operation: // // Perform resampling (16 input samples -> 11 output samples); // process in sub blocks of size 16 samples. int32_t m; for (m = 0; m < K; m++) { // first output sample Out[0] = ((int32_t)In[3] << 15) + (1 << 14); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToInt(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToInt(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToInt(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToInt(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToInt(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]); // update pointers In += 16; Out += 11; } } // Resampling ratio: 11/16 // input: int32_t (normalized, not saturated) :: size 16 * K // output: int16_t (saturated) :: size 11 * K // K: Number of blocks void WebRtcSpl_32khzTo22khzIntToShort(const int32_t *In, int16_t *Out, int32_t K) { ///////////////////////////////////////////////////////////// // Filter operation: // // Perform resampling (16 input samples -> 11 output samples); // process in sub blocks of size 16 samples. int32_t tmp; int32_t m; for (m = 0; m < K; m++) { // first output sample tmp = In[3]; if (tmp > (int32_t)0x00007FFF) tmp = 0x00007FFF; if (tmp < (int32_t)0xFFFF8000) tmp = 0xFFFF8000; Out[0] = (int16_t)tmp; // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToShort(&In[0], &In[22], kCoefficients32To22[0], &Out[1], &Out[10]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToShort(&In[2], &In[20], kCoefficients32To22[1], &Out[2], &Out[9]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToShort(&In[3], &In[19], kCoefficients32To22[2], &Out[3], &Out[8]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToShort(&In[5], &In[17], kCoefficients32To22[3], &Out[4], &Out[7]); // sum and accumulate filter coefficients and input samples WebRtcSpl_DotProdIntToShort(&In[6], &In[16], kCoefficients32To22[4], &Out[5], &Out[6]); // update pointers In += 16; Out += 11; } }