/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* * The core AEC algorithm, SSE2 version of speed-critical functions. */ #include "webrtc/modules/audio_processing/aec/aec_core.h" #include #include #include // memset #include "webrtc/modules/audio_processing/aec/aec_core_internal.h" #include "webrtc/modules/audio_processing/aec/aec_rdft.h" __inline static float MulRe(float aRe, float aIm, float bRe, float bIm) { return aRe * bRe - aIm * bIm; } __inline static float MulIm(float aRe, float aIm, float bRe, float bIm) { return aRe * bIm + aIm * bRe; } static void FilterFarSSE2(AecCore* aec, float yf[2][PART_LEN1]) { int i; const int num_partitions = aec->num_partitions; for (i = 0; i < num_partitions; i++) { int j; int xPos = (i + aec->xfBufBlockPos) * PART_LEN1; int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= num_partitions) { xPos -= num_partitions * (PART_LEN1); } // vectorized code (four at once) for (j = 0; j + 3 < PART_LEN1; j += 4) { const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); const __m128 wfBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); const __m128 wfBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); const __m128 yf_re = _mm_loadu_ps(&yf[0][j]); const __m128 yf_im = _mm_loadu_ps(&yf[1][j]); const __m128 a = _mm_mul_ps(xfBuf_re, wfBuf_re); const __m128 b = _mm_mul_ps(xfBuf_im, wfBuf_im); const __m128 c = _mm_mul_ps(xfBuf_re, wfBuf_im); const __m128 d = _mm_mul_ps(xfBuf_im, wfBuf_re); const __m128 e = _mm_sub_ps(a, b); const __m128 f = _mm_add_ps(c, d); const __m128 g = _mm_add_ps(yf_re, e); const __m128 h = _mm_add_ps(yf_im, f); _mm_storeu_ps(&yf[0][j], g); _mm_storeu_ps(&yf[1][j], h); } // scalar code for the remaining items. for (; j < PART_LEN1; j++) { yf[0][j] += MulRe(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); yf[1][j] += MulIm(aec->xfBuf[0][xPos + j], aec->xfBuf[1][xPos + j], aec->wfBuf[0][pos + j], aec->wfBuf[1][pos + j]); } } } static void ScaleErrorSignalSSE2(AecCore* aec, float ef[2][PART_LEN1]) { const __m128 k1e_10f = _mm_set1_ps(1e-10f); const __m128 kMu = aec->extended_filter_enabled ? _mm_set1_ps(kExtendedMu) : _mm_set1_ps(aec->normal_mu); const __m128 kThresh = aec->extended_filter_enabled ? _mm_set1_ps(kExtendedErrorThreshold) : _mm_set1_ps(aec->normal_error_threshold); int i; // vectorized code (four at once) for (i = 0; i + 3 < PART_LEN1; i += 4) { const __m128 xPow = _mm_loadu_ps(&aec->xPow[i]); const __m128 ef_re_base = _mm_loadu_ps(&ef[0][i]); const __m128 ef_im_base = _mm_loadu_ps(&ef[1][i]); const __m128 xPowPlus = _mm_add_ps(xPow, k1e_10f); __m128 ef_re = _mm_div_ps(ef_re_base, xPowPlus); __m128 ef_im = _mm_div_ps(ef_im_base, xPowPlus); const __m128 ef_re2 = _mm_mul_ps(ef_re, ef_re); const __m128 ef_im2 = _mm_mul_ps(ef_im, ef_im); const __m128 ef_sum2 = _mm_add_ps(ef_re2, ef_im2); const __m128 absEf = _mm_sqrt_ps(ef_sum2); const __m128 bigger = _mm_cmpgt_ps(absEf, kThresh); __m128 absEfPlus = _mm_add_ps(absEf, k1e_10f); const __m128 absEfInv = _mm_div_ps(kThresh, absEfPlus); __m128 ef_re_if = _mm_mul_ps(ef_re, absEfInv); __m128 ef_im_if = _mm_mul_ps(ef_im, absEfInv); ef_re_if = _mm_and_ps(bigger, ef_re_if); ef_im_if = _mm_and_ps(bigger, ef_im_if); ef_re = _mm_andnot_ps(bigger, ef_re); ef_im = _mm_andnot_ps(bigger, ef_im); ef_re = _mm_or_ps(ef_re, ef_re_if); ef_im = _mm_or_ps(ef_im, ef_im_if); ef_re = _mm_mul_ps(ef_re, kMu); ef_im = _mm_mul_ps(ef_im, kMu); _mm_storeu_ps(&ef[0][i], ef_re); _mm_storeu_ps(&ef[1][i], ef_im); } // scalar code for the remaining items. { const float mu = aec->extended_filter_enabled ? kExtendedMu : aec->normal_mu; const float error_threshold = aec->extended_filter_enabled ? kExtendedErrorThreshold : aec->normal_error_threshold; for (; i < (PART_LEN1); i++) { float abs_ef; ef[0][i] /= (aec->xPow[i] + 1e-10f); ef[1][i] /= (aec->xPow[i] + 1e-10f); abs_ef = sqrtf(ef[0][i] * ef[0][i] + ef[1][i] * ef[1][i]); if (abs_ef > error_threshold) { abs_ef = error_threshold / (abs_ef + 1e-10f); ef[0][i] *= abs_ef; ef[1][i] *= abs_ef; } // Stepsize factor ef[0][i] *= mu; ef[1][i] *= mu; } } } static void FilterAdaptationSSE2(AecCore* aec, float* fft, float ef[2][PART_LEN1]) { int i, j; const int num_partitions = aec->num_partitions; for (i = 0; i < num_partitions; i++) { int xPos = (i + aec->xfBufBlockPos) * (PART_LEN1); int pos = i * PART_LEN1; // Check for wrap if (i + aec->xfBufBlockPos >= num_partitions) { xPos -= num_partitions * PART_LEN1; } // Process the whole array... for (j = 0; j < PART_LEN; j += 4) { // Load xfBuf and ef. const __m128 xfBuf_re = _mm_loadu_ps(&aec->xfBuf[0][xPos + j]); const __m128 xfBuf_im = _mm_loadu_ps(&aec->xfBuf[1][xPos + j]); const __m128 ef_re = _mm_loadu_ps(&ef[0][j]); const __m128 ef_im = _mm_loadu_ps(&ef[1][j]); // Calculate the product of conjugate(xfBuf) by ef. // re(conjugate(a) * b) = aRe * bRe + aIm * bIm // im(conjugate(a) * b)= aRe * bIm - aIm * bRe const __m128 a = _mm_mul_ps(xfBuf_re, ef_re); const __m128 b = _mm_mul_ps(xfBuf_im, ef_im); const __m128 c = _mm_mul_ps(xfBuf_re, ef_im); const __m128 d = _mm_mul_ps(xfBuf_im, ef_re); const __m128 e = _mm_add_ps(a, b); const __m128 f = _mm_sub_ps(c, d); // Interleave real and imaginary parts. const __m128 g = _mm_unpacklo_ps(e, f); const __m128 h = _mm_unpackhi_ps(e, f); // Store _mm_storeu_ps(&fft[2 * j + 0], g); _mm_storeu_ps(&fft[2 * j + 4], h); } // ... and fixup the first imaginary entry. fft[1] = MulRe(aec->xfBuf[0][xPos + PART_LEN], -aec->xfBuf[1][xPos + PART_LEN], ef[0][PART_LEN], ef[1][PART_LEN]); aec_rdft_inverse_128(fft); memset(fft + PART_LEN, 0, sizeof(float) * PART_LEN); // fft scaling { float scale = 2.0f / PART_LEN2; const __m128 scale_ps = _mm_load_ps1(&scale); for (j = 0; j < PART_LEN; j += 4) { const __m128 fft_ps = _mm_loadu_ps(&fft[j]); const __m128 fft_scale = _mm_mul_ps(fft_ps, scale_ps); _mm_storeu_ps(&fft[j], fft_scale); } } aec_rdft_forward_128(fft); { float wt1 = aec->wfBuf[1][pos]; aec->wfBuf[0][pos + PART_LEN] += fft[1]; for (j = 0; j < PART_LEN; j += 4) { __m128 wtBuf_re = _mm_loadu_ps(&aec->wfBuf[0][pos + j]); __m128 wtBuf_im = _mm_loadu_ps(&aec->wfBuf[1][pos + j]); const __m128 fft0 = _mm_loadu_ps(&fft[2 * j + 0]); const __m128 fft4 = _mm_loadu_ps(&fft[2 * j + 4]); const __m128 fft_re = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(2, 0, 2, 0)); const __m128 fft_im = _mm_shuffle_ps(fft0, fft4, _MM_SHUFFLE(3, 1, 3, 1)); wtBuf_re = _mm_add_ps(wtBuf_re, fft_re); wtBuf_im = _mm_add_ps(wtBuf_im, fft_im); _mm_storeu_ps(&aec->wfBuf[0][pos + j], wtBuf_re); _mm_storeu_ps(&aec->wfBuf[1][pos + j], wtBuf_im); } aec->wfBuf[1][pos] = wt1; } } } static __m128 mm_pow_ps(__m128 a, __m128 b) { // a^b = exp2(b * log2(a)) // exp2(x) and log2(x) are calculated using polynomial approximations. __m128 log2_a, b_log2_a, a_exp_b; // Calculate log2(x), x = a. { // To calculate log2(x), we decompose x like this: // x = y * 2^n // n is an integer // y is in the [1.0, 2.0) range // // log2(x) = log2(y) + n // n can be evaluated by playing with float representation. // log2(y) in a small range can be approximated, this code uses an order // five polynomial approximation. The coefficients have been // estimated with the Remez algorithm and the resulting // polynomial has a maximum relative error of 0.00086%. // Compute n. // This is done by masking the exponent, shifting it into the top bit of // the mantissa, putting eight into the biased exponent (to shift/ // compensate the fact that the exponent has been shifted in the top/ // fractional part and finally getting rid of the implicit leading one // from the mantissa by substracting it out. static const ALIGN16_BEG int float_exponent_mask[4] ALIGN16_END = { 0x7F800000, 0x7F800000, 0x7F800000, 0x7F800000}; static const ALIGN16_BEG int eight_biased_exponent[4] ALIGN16_END = { 0x43800000, 0x43800000, 0x43800000, 0x43800000}; static const ALIGN16_BEG int implicit_leading_one[4] ALIGN16_END = { 0x43BF8000, 0x43BF8000, 0x43BF8000, 0x43BF8000}; static const int shift_exponent_into_top_mantissa = 8; const __m128 two_n = _mm_and_ps(a, *((__m128*)float_exponent_mask)); const __m128 n_1 = _mm_castsi128_ps(_mm_srli_epi32( _mm_castps_si128(two_n), shift_exponent_into_top_mantissa)); const __m128 n_0 = _mm_or_ps(n_1, *((__m128*)eight_biased_exponent)); const __m128 n = _mm_sub_ps(n_0, *((__m128*)implicit_leading_one)); // Compute y. static const ALIGN16_BEG int mantissa_mask[4] ALIGN16_END = { 0x007FFFFF, 0x007FFFFF, 0x007FFFFF, 0x007FFFFF}; static const ALIGN16_BEG int zero_biased_exponent_is_one[4] ALIGN16_END = { 0x3F800000, 0x3F800000, 0x3F800000, 0x3F800000}; const __m128 mantissa = _mm_and_ps(a, *((__m128*)mantissa_mask)); const __m128 y = _mm_or_ps(mantissa, *((__m128*)zero_biased_exponent_is_one)); // Approximate log2(y) ~= (y - 1) * pol5(y). // pol5(y) = C5 * y^5 + C4 * y^4 + C3 * y^3 + C2 * y^2 + C1 * y + C0 static const ALIGN16_BEG float ALIGN16_END C5[4] = { -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f, -3.4436006e-2f}; static const ALIGN16_BEG float ALIGN16_END C4[4] = {3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f, 3.1821337e-1f}; static const ALIGN16_BEG float ALIGN16_END C3[4] = {-1.2315303f, -1.2315303f, -1.2315303f, -1.2315303f}; static const ALIGN16_BEG float ALIGN16_END C2[4] = {2.5988452f, 2.5988452f, 2.5988452f, 2.5988452f}; static const ALIGN16_BEG float ALIGN16_END C1[4] = {-3.3241990f, -3.3241990f, -3.3241990f, -3.3241990f}; static const ALIGN16_BEG float ALIGN16_END C0[4] = {3.1157899f, 3.1157899f, 3.1157899f, 3.1157899f}; const __m128 pol5_y_0 = _mm_mul_ps(y, *((__m128*)C5)); const __m128 pol5_y_1 = _mm_add_ps(pol5_y_0, *((__m128*)C4)); const __m128 pol5_y_2 = _mm_mul_ps(pol5_y_1, y); const __m128 pol5_y_3 = _mm_add_ps(pol5_y_2, *((__m128*)C3)); const __m128 pol5_y_4 = _mm_mul_ps(pol5_y_3, y); const __m128 pol5_y_5 = _mm_add_ps(pol5_y_4, *((__m128*)C2)); const __m128 pol5_y_6 = _mm_mul_ps(pol5_y_5, y); const __m128 pol5_y_7 = _mm_add_ps(pol5_y_6, *((__m128*)C1)); const __m128 pol5_y_8 = _mm_mul_ps(pol5_y_7, y); const __m128 pol5_y = _mm_add_ps(pol5_y_8, *((__m128*)C0)); const __m128 y_minus_one = _mm_sub_ps(y, *((__m128*)zero_biased_exponent_is_one)); const __m128 log2_y = _mm_mul_ps(y_minus_one, pol5_y); // Combine parts. log2_a = _mm_add_ps(n, log2_y); } // b * log2(a) b_log2_a = _mm_mul_ps(b, log2_a); // Calculate exp2(x), x = b * log2(a). { // To calculate 2^x, we decompose x like this: // x = n + y // n is an integer, the value of x - 0.5 rounded down, therefore // y is in the [0.5, 1.5) range // // 2^x = 2^n * 2^y // 2^n can be evaluated by playing with float representation. // 2^y in a small range can be approximated, this code uses an order two // polynomial approximation. The coefficients have been estimated // with the Remez algorithm and the resulting polynomial has a // maximum relative error of 0.17%. // To avoid over/underflow, we reduce the range of input to ]-127, 129]. static const ALIGN16_BEG float max_input[4] ALIGN16_END = {129.f, 129.f, 129.f, 129.f}; static const ALIGN16_BEG float min_input[4] ALIGN16_END = { -126.99999f, -126.99999f, -126.99999f, -126.99999f}; const __m128 x_min = _mm_min_ps(b_log2_a, *((__m128*)max_input)); const __m128 x_max = _mm_max_ps(x_min, *((__m128*)min_input)); // Compute n. static const ALIGN16_BEG float half[4] ALIGN16_END = {0.5f, 0.5f, 0.5f, 0.5f}; const __m128 x_minus_half = _mm_sub_ps(x_max, *((__m128*)half)); const __m128i x_minus_half_floor = _mm_cvtps_epi32(x_minus_half); // Compute 2^n. static const ALIGN16_BEG int float_exponent_bias[4] ALIGN16_END = { 127, 127, 127, 127}; static const int float_exponent_shift = 23; const __m128i two_n_exponent = _mm_add_epi32(x_minus_half_floor, *((__m128i*)float_exponent_bias)); const __m128 two_n = _mm_castsi128_ps(_mm_slli_epi32(two_n_exponent, float_exponent_shift)); // Compute y. const __m128 y = _mm_sub_ps(x_max, _mm_cvtepi32_ps(x_minus_half_floor)); // Approximate 2^y ~= C2 * y^2 + C1 * y + C0. static const ALIGN16_BEG float C2[4] ALIGN16_END = { 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f, 3.3718944e-1f}; static const ALIGN16_BEG float C1[4] ALIGN16_END = { 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f, 6.5763628e-1f}; static const ALIGN16_BEG float C0[4] ALIGN16_END = {1.0017247f, 1.0017247f, 1.0017247f, 1.0017247f}; const __m128 exp2_y_0 = _mm_mul_ps(y, *((__m128*)C2)); const __m128 exp2_y_1 = _mm_add_ps(exp2_y_0, *((__m128*)C1)); const __m128 exp2_y_2 = _mm_mul_ps(exp2_y_1, y); const __m128 exp2_y = _mm_add_ps(exp2_y_2, *((__m128*)C0)); // Combine parts. a_exp_b = _mm_mul_ps(exp2_y, two_n); } return a_exp_b; } extern const float WebRtcAec_weightCurve[65]; extern const float WebRtcAec_overDriveCurve[65]; static void OverdriveAndSuppressSSE2(AecCore* aec, float hNl[PART_LEN1], const float hNlFb, float efw[2][PART_LEN1]) { int i; const __m128 vec_hNlFb = _mm_set1_ps(hNlFb); const __m128 vec_one = _mm_set1_ps(1.0f); const __m128 vec_minus_one = _mm_set1_ps(-1.0f); const __m128 vec_overDriveSm = _mm_set1_ps(aec->overDriveSm); // vectorized code (four at once) for (i = 0; i + 3 < PART_LEN1; i += 4) { // Weight subbands __m128 vec_hNl = _mm_loadu_ps(&hNl[i]); const __m128 vec_weightCurve = _mm_loadu_ps(&WebRtcAec_weightCurve[i]); const __m128 bigger = _mm_cmpgt_ps(vec_hNl, vec_hNlFb); const __m128 vec_weightCurve_hNlFb = _mm_mul_ps(vec_weightCurve, vec_hNlFb); const __m128 vec_one_weightCurve = _mm_sub_ps(vec_one, vec_weightCurve); const __m128 vec_one_weightCurve_hNl = _mm_mul_ps(vec_one_weightCurve, vec_hNl); const __m128 vec_if0 = _mm_andnot_ps(bigger, vec_hNl); const __m128 vec_if1 = _mm_and_ps( bigger, _mm_add_ps(vec_weightCurve_hNlFb, vec_one_weightCurve_hNl)); vec_hNl = _mm_or_ps(vec_if0, vec_if1); { const __m128 vec_overDriveCurve = _mm_loadu_ps(&WebRtcAec_overDriveCurve[i]); const __m128 vec_overDriveSm_overDriveCurve = _mm_mul_ps(vec_overDriveSm, vec_overDriveCurve); vec_hNl = mm_pow_ps(vec_hNl, vec_overDriveSm_overDriveCurve); _mm_storeu_ps(&hNl[i], vec_hNl); } // Suppress error signal { __m128 vec_efw_re = _mm_loadu_ps(&efw[0][i]); __m128 vec_efw_im = _mm_loadu_ps(&efw[1][i]); vec_efw_re = _mm_mul_ps(vec_efw_re, vec_hNl); vec_efw_im = _mm_mul_ps(vec_efw_im, vec_hNl); // Ooura fft returns incorrect sign on imaginary component. It matters // here because we are making an additive change with comfort noise. vec_efw_im = _mm_mul_ps(vec_efw_im, vec_minus_one); _mm_storeu_ps(&efw[0][i], vec_efw_re); _mm_storeu_ps(&efw[1][i], vec_efw_im); } } // scalar code for the remaining items. for (; i < PART_LEN1; i++) { // Weight subbands if (hNl[i] > hNlFb) { hNl[i] = WebRtcAec_weightCurve[i] * hNlFb + (1 - WebRtcAec_weightCurve[i]) * hNl[i]; } hNl[i] = powf(hNl[i], aec->overDriveSm * WebRtcAec_overDriveCurve[i]); // Suppress error signal efw[0][i] *= hNl[i]; efw[1][i] *= hNl[i]; // Ooura fft returns incorrect sign on imaginary component. It matters // here because we are making an additive change with comfort noise. efw[1][i] *= -1; } } void WebRtcAec_InitAec_SSE2(void) { WebRtcAec_FilterFar = FilterFarSSE2; WebRtcAec_ScaleErrorSignal = ScaleErrorSignalSSE2; WebRtcAec_FilterAdaptation = FilterAdaptationSSE2; WebRtcAec_OverdriveAndSuppress = OverdriveAndSuppressSSE2; }