/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/modules/rtp_rtcp/source/rtp_format_vp8.h" #include // assert #include // memcpy #include #include "webrtc/modules/rtp_rtcp/source/vp8_partition_aggregator.h" namespace webrtc { // Define how the VP8PacketizerModes are implemented. // Modes are: kStrict, kAggregate, kEqualSize. const RtpFormatVp8::AggregationMode RtpFormatVp8::aggr_modes_[kNumModes] = { kAggrNone, kAggrPartitions, kAggrFragments }; const bool RtpFormatVp8::balance_modes_[kNumModes] = { true, true, true }; const bool RtpFormatVp8::separate_first_modes_[kNumModes] = { true, false, false }; RtpFormatVp8::RtpFormatVp8(const uint8_t* payload_data, uint32_t payload_size, const RTPVideoHeaderVP8& hdr_info, int max_payload_len, const RTPFragmentationHeader& fragmentation, VP8PacketizerMode mode) : payload_data_(payload_data), payload_size_(static_cast(payload_size)), vp8_fixed_payload_descriptor_bytes_(1), aggr_mode_(aggr_modes_[mode]), balance_(balance_modes_[mode]), separate_first_(separate_first_modes_[mode]), hdr_info_(hdr_info), num_partitions_(fragmentation.fragmentationVectorSize), max_payload_len_(max_payload_len), packets_calculated_(false) { part_info_.CopyFrom(fragmentation); } RtpFormatVp8::RtpFormatVp8(const uint8_t* payload_data, uint32_t payload_size, const RTPVideoHeaderVP8& hdr_info, int max_payload_len) : payload_data_(payload_data), payload_size_(static_cast(payload_size)), part_info_(), vp8_fixed_payload_descriptor_bytes_(1), aggr_mode_(aggr_modes_[kEqualSize]), balance_(balance_modes_[kEqualSize]), separate_first_(separate_first_modes_[kEqualSize]), hdr_info_(hdr_info), num_partitions_(1), max_payload_len_(max_payload_len), packets_calculated_(false) { part_info_.VerifyAndAllocateFragmentationHeader(1); part_info_.fragmentationLength[0] = payload_size; part_info_.fragmentationOffset[0] = 0; } RtpFormatVp8::~RtpFormatVp8() {} int RtpFormatVp8::NextPacket(uint8_t* buffer, int* bytes_to_send, bool* last_packet) { if (!packets_calculated_) { int ret = 0; if (aggr_mode_ == kAggrPartitions && balance_) { ret = GeneratePacketsBalancedAggregates(); } else { ret = GeneratePackets(); } if (ret < 0) { return ret; } } if (packets_.empty()) { return -1; } InfoStruct packet_info = packets_.front(); packets_.pop(); *bytes_to_send = WriteHeaderAndPayload(packet_info, buffer, max_payload_len_); if (*bytes_to_send < 0) { return -1; } *last_packet = packets_.empty(); return packet_info.first_partition_ix; } int RtpFormatVp8::CalcNextSize(int max_payload_len, int remaining_bytes, bool split_payload) const { if (max_payload_len == 0 || remaining_bytes == 0) { return 0; } if (!split_payload) { return max_payload_len >= remaining_bytes ? remaining_bytes : 0; } if (balance_) { // Balance payload sizes to produce (almost) equal size // fragments. // Number of fragments for remaining_bytes: int num_frags = remaining_bytes / max_payload_len + 1; // Number of bytes in this fragment: return static_cast(static_cast(remaining_bytes) / num_frags + 0.5); } else { return max_payload_len >= remaining_bytes ? remaining_bytes : max_payload_len; } } int RtpFormatVp8::GeneratePackets() { if (max_payload_len_ < vp8_fixed_payload_descriptor_bytes_ + PayloadDescriptorExtraLength() + 1) { // The provided payload length is not long enough for the payload // descriptor and one payload byte. Return an error. return -1; } int total_bytes_processed = 0; bool start_on_new_fragment = true; bool beginning = true; int part_ix = 0; while (total_bytes_processed < payload_size_) { int packet_bytes = 0; // How much data to send in this packet. bool split_payload = true; // Splitting of partitions is initially allowed. int remaining_in_partition = part_info_.fragmentationOffset[part_ix] - total_bytes_processed + part_info_.fragmentationLength[part_ix]; int rem_payload_len = max_payload_len_ - (vp8_fixed_payload_descriptor_bytes_ + PayloadDescriptorExtraLength()); int first_partition_in_packet = part_ix; while (int next_size = CalcNextSize(rem_payload_len, remaining_in_partition, split_payload)) { packet_bytes += next_size; rem_payload_len -= next_size; remaining_in_partition -= next_size; if (remaining_in_partition == 0 && !(beginning && separate_first_)) { // Advance to next partition? // Check that there are more partitions; verify that we are either // allowed to aggregate fragments, or that we are allowed to // aggregate intact partitions and that we started this packet // with an intact partition (indicated by first_fragment_ == true). if (part_ix + 1 < num_partitions_ && ((aggr_mode_ == kAggrFragments) || (aggr_mode_ == kAggrPartitions && start_on_new_fragment))) { assert(part_ix < num_partitions_); remaining_in_partition = part_info_.fragmentationLength[++part_ix]; // Disallow splitting unless kAggrFragments. In kAggrPartitions, // we can only aggregate intact partitions. split_payload = (aggr_mode_ == kAggrFragments); } } else if (balance_ && remaining_in_partition > 0) { break; } } if (remaining_in_partition == 0) { ++part_ix; // Advance to next partition. } assert(packet_bytes > 0); QueuePacket(total_bytes_processed, packet_bytes, first_partition_in_packet, start_on_new_fragment); total_bytes_processed += packet_bytes; start_on_new_fragment = (remaining_in_partition == 0); beginning = false; // Next packet cannot be first packet in frame. } packets_calculated_ = true; assert(total_bytes_processed == payload_size_); return 0; } int RtpFormatVp8::GeneratePacketsBalancedAggregates() { if (max_payload_len_ < vp8_fixed_payload_descriptor_bytes_ + PayloadDescriptorExtraLength() + 1) { // The provided payload length is not long enough for the payload // descriptor and one payload byte. Return an error. return -1; } std::vector partition_decision; const int overhead = vp8_fixed_payload_descriptor_bytes_ + PayloadDescriptorExtraLength(); const uint32_t max_payload_len = max_payload_len_ - overhead; int min_size, max_size; AggregateSmallPartitions(&partition_decision, &min_size, &max_size); int total_bytes_processed = 0; int part_ix = 0; while (part_ix < num_partitions_) { if (partition_decision[part_ix] == -1) { // Split large partitions. int remaining_partition = part_info_.fragmentationLength[part_ix]; int num_fragments = Vp8PartitionAggregator::CalcNumberOfFragments( remaining_partition, max_payload_len, overhead, min_size, max_size); const int packet_bytes = (remaining_partition + num_fragments - 1) / num_fragments; for (int n = 0; n < num_fragments; ++n) { const int this_packet_bytes = packet_bytes < remaining_partition ? packet_bytes : remaining_partition; QueuePacket(total_bytes_processed, this_packet_bytes, part_ix, (n == 0)); remaining_partition -= this_packet_bytes; total_bytes_processed += this_packet_bytes; if (this_packet_bytes < min_size) { min_size = this_packet_bytes; } if (this_packet_bytes > max_size) { max_size = this_packet_bytes; } } assert(remaining_partition == 0); ++part_ix; } else { int this_packet_bytes = 0; const int first_partition_in_packet = part_ix; const int aggregation_index = partition_decision[part_ix]; while (static_cast(part_ix) < partition_decision.size() && partition_decision[part_ix] == aggregation_index) { // Collect all partitions that were aggregated into the same packet. this_packet_bytes += part_info_.fragmentationLength[part_ix]; ++part_ix; } QueuePacket(total_bytes_processed, this_packet_bytes, first_partition_in_packet, true); total_bytes_processed += this_packet_bytes; } } packets_calculated_ = true; return 0; } void RtpFormatVp8::AggregateSmallPartitions(std::vector* partition_vec, int* min_size, int* max_size) { assert(min_size && max_size); *min_size = -1; *max_size = -1; assert(partition_vec); partition_vec->assign(num_partitions_, -1); const int overhead = vp8_fixed_payload_descriptor_bytes_ + PayloadDescriptorExtraLength(); const uint32_t max_payload_len = max_payload_len_ - overhead; int first_in_set = 0; int last_in_set = 0; int num_aggregate_packets = 0; // Find sets of partitions smaller than max_payload_len_. while (first_in_set < num_partitions_) { if (part_info_.fragmentationLength[first_in_set] < max_payload_len) { // Found start of a set. last_in_set = first_in_set; while (last_in_set + 1 < num_partitions_ && part_info_.fragmentationLength[last_in_set + 1] < max_payload_len) { ++last_in_set; } // Found end of a set. Run optimized aggregator. It is ok if start == end. Vp8PartitionAggregator aggregator(part_info_, first_in_set, last_in_set); if (*min_size >= 0 && *max_size >= 0) { aggregator.SetPriorMinMax(*min_size, *max_size); } Vp8PartitionAggregator::ConfigVec optimal_config = aggregator.FindOptimalConfiguration(max_payload_len, overhead); aggregator.CalcMinMax(optimal_config, min_size, max_size); for (int i = first_in_set, j = 0; i <= last_in_set; ++i, ++j) { // Transfer configuration for this set of partitions to the joint // partition vector representing all partitions in the frame. (*partition_vec)[i] = num_aggregate_packets + optimal_config[j]; } num_aggregate_packets += optimal_config.back() + 1; first_in_set = last_in_set; } ++first_in_set; } } void RtpFormatVp8::QueuePacket(int start_pos, int packet_size, int first_partition_in_packet, bool start_on_new_fragment) { // Write info to packet info struct and store in packet info queue. InfoStruct packet_info; packet_info.payload_start_pos = start_pos; packet_info.size = packet_size; packet_info.first_partition_ix = first_partition_in_packet; packet_info.first_fragment = start_on_new_fragment; packets_.push(packet_info); } int RtpFormatVp8::WriteHeaderAndPayload(const InfoStruct& packet_info, uint8_t* buffer, int buffer_length) const { // Write the VP8 payload descriptor. // 0 // 0 1 2 3 4 5 6 7 8 // +-+-+-+-+-+-+-+-+-+ // |X| |N|S| PART_ID | // +-+-+-+-+-+-+-+-+-+ // X: |I|L|T|K| | (mandatory if any of the below are used) // +-+-+-+-+-+-+-+-+-+ // I: |PictureID (8/16b)| (optional) // +-+-+-+-+-+-+-+-+-+ // L: | TL0PIC_IDX | (optional) // +-+-+-+-+-+-+-+-+-+ // T/K: |TID:Y| KEYIDX | (optional) // +-+-+-+-+-+-+-+-+-+ assert(packet_info.size > 0); buffer[0] = 0; if (XFieldPresent()) buffer[0] |= kXBit; if (hdr_info_.nonReference) buffer[0] |= kNBit; if (packet_info.first_fragment) buffer[0] |= kSBit; buffer[0] |= (packet_info.first_partition_ix & kPartIdField); const int extension_length = WriteExtensionFields(buffer, buffer_length); memcpy(&buffer[vp8_fixed_payload_descriptor_bytes_ + extension_length], &payload_data_[packet_info.payload_start_pos], packet_info.size); // Return total length of written data. return packet_info.size + vp8_fixed_payload_descriptor_bytes_ + extension_length; } int RtpFormatVp8::WriteExtensionFields(uint8_t* buffer, int buffer_length) const { int extension_length = 0; if (XFieldPresent()) { uint8_t* x_field = buffer + vp8_fixed_payload_descriptor_bytes_; *x_field = 0; extension_length = 1; // One octet for the X field. if (PictureIdPresent()) { if (WritePictureIDFields(x_field, buffer, buffer_length, &extension_length) < 0) { return -1; } } if (TL0PicIdxFieldPresent()) { if (WriteTl0PicIdxFields(x_field, buffer, buffer_length, &extension_length) < 0) { return -1; } } if (TIDFieldPresent() || KeyIdxFieldPresent()) { if (WriteTIDAndKeyIdxFields(x_field, buffer, buffer_length, &extension_length) < 0) { return -1; } } assert(extension_length == PayloadDescriptorExtraLength()); } return extension_length; } int RtpFormatVp8::WritePictureIDFields(uint8_t* x_field, uint8_t* buffer, int buffer_length, int* extension_length) const { *x_field |= kIBit; const int pic_id_length = WritePictureID( buffer + vp8_fixed_payload_descriptor_bytes_ + *extension_length, buffer_length - vp8_fixed_payload_descriptor_bytes_ - *extension_length); if (pic_id_length < 0) return -1; *extension_length += pic_id_length; return 0; } int RtpFormatVp8::WritePictureID(uint8_t* buffer, int buffer_length) const { const uint16_t pic_id = static_cast (hdr_info_.pictureId); int picture_id_len = PictureIdLength(); if (picture_id_len > buffer_length) return -1; if (picture_id_len == 2) { buffer[0] = 0x80 | ((pic_id >> 8) & 0x7F); buffer[1] = pic_id & 0xFF; } else if (picture_id_len == 1) { buffer[0] = pic_id & 0x7F; } return picture_id_len; } int RtpFormatVp8::WriteTl0PicIdxFields(uint8_t* x_field, uint8_t* buffer, int buffer_length, int* extension_length) const { if (buffer_length < vp8_fixed_payload_descriptor_bytes_ + *extension_length + 1) { return -1; } *x_field |= kLBit; buffer[vp8_fixed_payload_descriptor_bytes_ + *extension_length] = hdr_info_.tl0PicIdx; ++*extension_length; return 0; } int RtpFormatVp8::WriteTIDAndKeyIdxFields(uint8_t* x_field, uint8_t* buffer, int buffer_length, int* extension_length) const { if (buffer_length < vp8_fixed_payload_descriptor_bytes_ + *extension_length + 1) { return -1; } uint8_t* data_field = &buffer[vp8_fixed_payload_descriptor_bytes_ + *extension_length]; *data_field = 0; if (TIDFieldPresent()) { *x_field |= kTBit; assert(hdr_info_.temporalIdx <= 3); *data_field |= hdr_info_.temporalIdx << 6; *data_field |= hdr_info_.layerSync ? kYBit : 0; } if (KeyIdxFieldPresent()) { *x_field |= kKBit; *data_field |= (hdr_info_.keyIdx & kKeyIdxField); } ++*extension_length; return 0; } int RtpFormatVp8::PayloadDescriptorExtraLength() const { int length_bytes = PictureIdLength(); if (TL0PicIdxFieldPresent()) ++length_bytes; if (TIDFieldPresent() || KeyIdxFieldPresent()) ++length_bytes; if (length_bytes > 0) ++length_bytes; // Include the extension field. return length_bytes; } int RtpFormatVp8::PictureIdLength() const { if (hdr_info_.pictureId == kNoPictureId) { return 0; } if (hdr_info_.pictureId <= 0x7F) { return 1; } return 2; } bool RtpFormatVp8::XFieldPresent() const { return (TIDFieldPresent() || TL0PicIdxFieldPresent() || PictureIdPresent() || KeyIdxFieldPresent()); } bool RtpFormatVp8::TIDFieldPresent() const { assert((hdr_info_.layerSync == false) || (hdr_info_.temporalIdx != kNoTemporalIdx)); return (hdr_info_.temporalIdx != kNoTemporalIdx); } bool RtpFormatVp8::KeyIdxFieldPresent() const { return (hdr_info_.keyIdx != kNoKeyIdx); } bool RtpFormatVp8::TL0PicIdxFieldPresent() const { return (hdr_info_.tl0PicIdx != kNoTl0PicIdx); } } // namespace webrtc