/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/system_wrappers/interface/clock.h" #if defined(_WIN32) // Windows needs to be included before mmsystem.h #include #include #include #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC)) #include #include #endif #include "webrtc/system_wrappers/interface/rw_lock_wrapper.h" #include "webrtc/system_wrappers/interface/tick_util.h" namespace webrtc { const double kNtpFracPerMs = 4.294967296E6; int64_t Clock::NtpToMs(uint32_t ntp_secs, uint32_t ntp_frac) { const double ntp_frac_ms = static_cast(ntp_frac) / kNtpFracPerMs; return 1000 * static_cast(ntp_secs) + static_cast(ntp_frac_ms + 0.5); } #if defined(_WIN32) struct reference_point { FILETIME file_time; LARGE_INTEGER counterMS; }; struct WindowsHelpTimer { volatile LONG _timeInMs; volatile LONG _numWrapTimeInMs; reference_point _ref_point; volatile LONG _sync_flag; }; void Synchronize(WindowsHelpTimer* help_timer) { const LONG start_value = 0; const LONG new_value = 1; const LONG synchronized_value = 2; LONG compare_flag = new_value; while (help_timer->_sync_flag == start_value) { const LONG new_value = 1; compare_flag = InterlockedCompareExchange( &help_timer->_sync_flag, new_value, start_value); } if (compare_flag != start_value) { // This thread was not the one that incremented the sync flag. // Block until synchronization finishes. while (compare_flag != synchronized_value) { ::Sleep(0); } return; } // Only the synchronizing thread gets here so this part can be // considered single threaded. // set timer accuracy to 1 ms timeBeginPeriod(1); FILETIME ft0 = { 0, 0 }, ft1 = { 0, 0 }; // // Spin waiting for a change in system time. Get the matching // performance counter value for that time. // ::GetSystemTimeAsFileTime(&ft0); do { ::GetSystemTimeAsFileTime(&ft1); help_timer->_ref_point.counterMS.QuadPart = ::timeGetTime(); ::Sleep(0); } while ((ft0.dwHighDateTime == ft1.dwHighDateTime) && (ft0.dwLowDateTime == ft1.dwLowDateTime)); help_timer->_ref_point.file_time = ft1; timeEndPeriod(1); } void get_time(WindowsHelpTimer* help_timer, FILETIME& current_time) { // we can't use query performance counter due to speed stepping DWORD t = timeGetTime(); // NOTE: we have a missmatch in sign between _timeInMs(LONG) and // (DWORD) however we only use it here without +- etc volatile LONG* timeInMsPtr = &help_timer->_timeInMs; // Make sure that we only inc wrapper once. DWORD old = InterlockedExchange(timeInMsPtr, t); if(old > t) { // wrap help_timer->_numWrapTimeInMs++; } LARGE_INTEGER elapsedMS; elapsedMS.HighPart = help_timer->_numWrapTimeInMs; elapsedMS.LowPart = t; elapsedMS.QuadPart = elapsedMS.QuadPart - help_timer->_ref_point.counterMS.QuadPart; // Translate to 100-nanoseconds intervals (FILETIME resolution) // and add to reference FILETIME to get current FILETIME. ULARGE_INTEGER filetime_ref_as_ul; filetime_ref_as_ul.HighPart = help_timer->_ref_point.file_time.dwHighDateTime; filetime_ref_as_ul.LowPart = help_timer->_ref_point.file_time.dwLowDateTime; filetime_ref_as_ul.QuadPart += (ULONGLONG)((elapsedMS.QuadPart)*1000*10); // Copy to result current_time.dwHighDateTime = filetime_ref_as_ul.HighPart; current_time.dwLowDateTime = filetime_ref_as_ul.LowPart; } #endif class RealTimeClock : public Clock { // Return a timestamp in milliseconds relative to some arbitrary source; the // source is fixed for this clock. virtual int64_t TimeInMilliseconds() const OVERRIDE { return TickTime::MillisecondTimestamp(); } // Return a timestamp in microseconds relative to some arbitrary source; the // source is fixed for this clock. virtual int64_t TimeInMicroseconds() const OVERRIDE { return TickTime::MicrosecondTimestamp(); } // Retrieve an NTP absolute timestamp in seconds and fractions of a second. virtual void CurrentNtp(uint32_t& seconds, uint32_t& fractions) const OVERRIDE { timeval tv = CurrentTimeVal(); double microseconds_in_seconds; Adjust(tv, &seconds, µseconds_in_seconds); fractions = static_cast( microseconds_in_seconds * kMagicNtpFractionalUnit + 0.5); } // Retrieve an NTP absolute timestamp in milliseconds. virtual int64_t CurrentNtpInMilliseconds() const OVERRIDE { timeval tv = CurrentTimeVal(); uint32_t seconds; double microseconds_in_seconds; Adjust(tv, &seconds, µseconds_in_seconds); return 1000 * static_cast(seconds) + static_cast(1000.0 * microseconds_in_seconds + 0.5); } protected: virtual timeval CurrentTimeVal() const = 0; static void Adjust(const timeval& tv, uint32_t* adjusted_s, double* adjusted_us_in_s) { *adjusted_s = tv.tv_sec + kNtpJan1970; *adjusted_us_in_s = tv.tv_usec / 1e6; if (*adjusted_us_in_s >= 1) { *adjusted_us_in_s -= 1; ++*adjusted_s; } else if (*adjusted_us_in_s < -1) { *adjusted_us_in_s += 1; --*adjusted_s; } } }; #if defined(_WIN32) class WindowsRealTimeClock : public RealTimeClock { public: WindowsRealTimeClock(WindowsHelpTimer* helpTimer) : _helpTimer(helpTimer) {} virtual ~WindowsRealTimeClock() {} protected: virtual timeval CurrentTimeVal() const OVERRIDE { const uint64_t FILETIME_1970 = 0x019db1ded53e8000; FILETIME StartTime; uint64_t Time; struct timeval tv; // We can't use query performance counter since they can change depending on // speed stepping. get_time(_helpTimer, StartTime); Time = (((uint64_t) StartTime.dwHighDateTime) << 32) + (uint64_t) StartTime.dwLowDateTime; // Convert the hecto-nano second time to tv format. Time -= FILETIME_1970; tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000); tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10); return tv; } WindowsHelpTimer* _helpTimer; }; #elif ((defined WEBRTC_LINUX) || (defined WEBRTC_MAC)) class UnixRealTimeClock : public RealTimeClock { public: UnixRealTimeClock() {} virtual ~UnixRealTimeClock() {} protected: virtual timeval CurrentTimeVal() const OVERRIDE { struct timeval tv; struct timezone tz; tz.tz_minuteswest = 0; tz.tz_dsttime = 0; gettimeofday(&tv, &tz); return tv; } }; #endif #if defined(_WIN32) // Keeps the global state for the Windows implementation of RtpRtcpClock. // Note that this is a POD. Only PODs are allowed to have static storage // duration according to the Google Style guide. // // Note that on Windows, GetSystemTimeAsFileTime has poorer (up to 15 ms) // resolution than the media timers, hence the WindowsHelpTimer context // object and Synchronize API to sync the two. // // We only sync up once, which means that on Windows, our realtime clock // wont respond to system time/date changes without a program restart. // TODO(henrike): We should probably call sync more often to catch // drift and time changes for parity with other platforms. static WindowsHelpTimer *SyncGlobalHelpTimer() { static WindowsHelpTimer global_help_timer = {0, 0, {{ 0, 0}, 0}, 0}; Synchronize(&global_help_timer); return &global_help_timer; } #endif Clock* Clock::GetRealTimeClock() { #if defined(_WIN32) static WindowsRealTimeClock clock(SyncGlobalHelpTimer()); return &clock; #elif defined(WEBRTC_LINUX) || defined(WEBRTC_MAC) static UnixRealTimeClock clock; return &clock; #else return NULL; #endif } SimulatedClock::SimulatedClock(int64_t initial_time_us) : time_us_(initial_time_us), lock_(RWLockWrapper::CreateRWLock()) { } SimulatedClock::~SimulatedClock() { } int64_t SimulatedClock::TimeInMilliseconds() const { ReadLockScoped synchronize(*lock_); return (time_us_ + 500) / 1000; } int64_t SimulatedClock::TimeInMicroseconds() const { ReadLockScoped synchronize(*lock_); return time_us_; } void SimulatedClock::CurrentNtp(uint32_t& seconds, uint32_t& fractions) const { int64_t now_ms = TimeInMilliseconds(); seconds = (now_ms / 1000) + kNtpJan1970; fractions = static_cast((now_ms % 1000) * kMagicNtpFractionalUnit / 1000); } int64_t SimulatedClock::CurrentNtpInMilliseconds() const { return TimeInMilliseconds() + 1000 * static_cast(kNtpJan1970); } void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) { AdvanceTimeMicroseconds(1000 * milliseconds); } void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) { WriteLockScoped synchronize(*lock_); time_us_ += microseconds; } }; // namespace webrtc