/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/system_wrappers/interface/timestamp_extrapolator.h" #include namespace webrtc { TimestampExtrapolator::TimestampExtrapolator(int64_t start_ms) : _rwLock(RWLockWrapper::CreateRWLock()), _startMs(0), _firstTimestamp(0), _wrapArounds(0), _prevUnwrappedTimestamp(-1), _prevWrapTimestamp(-1), _lambda(1), _firstAfterReset(true), _packetCount(0), _startUpFilterDelayInPackets(2), _detectorAccumulatorPos(0), _detectorAccumulatorNeg(0), _alarmThreshold(60e3), _accDrift(6600), // in timestamp ticks, i.e. 15 ms _accMaxError(7000), _pP11(1e10) { Reset(start_ms); } TimestampExtrapolator::~TimestampExtrapolator() { delete _rwLock; } void TimestampExtrapolator::Reset(int64_t start_ms) { WriteLockScoped wl(*_rwLock); _startMs = start_ms; _prevMs = _startMs; _firstTimestamp = 0; _w[0] = 90.0; _w[1] = 0; _pP[0][0] = 1; _pP[1][1] = _pP11; _pP[0][1] = _pP[1][0] = 0; _firstAfterReset = true; _prevUnwrappedTimestamp = -1; _prevWrapTimestamp = -1; _wrapArounds = 0; _packetCount = 0; _detectorAccumulatorPos = 0; _detectorAccumulatorNeg = 0; } void TimestampExtrapolator::Update(int64_t tMs, uint32_t ts90khz) { _rwLock->AcquireLockExclusive(); if (tMs - _prevMs > 10e3) { // Ten seconds without a complete frame. // Reset the extrapolator _rwLock->ReleaseLockExclusive(); Reset(tMs); _rwLock->AcquireLockExclusive(); } else { _prevMs = tMs; } // Remove offset to prevent badly scaled matrices tMs -= _startMs; CheckForWrapArounds(ts90khz); int64_t unwrapped_ts90khz = static_cast(ts90khz) + _wrapArounds * ((static_cast(1) << 32) - 1); if (_prevUnwrappedTimestamp >= 0 && unwrapped_ts90khz < _prevUnwrappedTimestamp) { // Drop reordered frames. _rwLock->ReleaseLockExclusive(); return; } if (_firstAfterReset) { // Make an initial guess of the offset, // should be almost correct since tMs - _startMs // should about zero at this time. _w[1] = -_w[0] * tMs; _firstTimestamp = unwrapped_ts90khz; _firstAfterReset = false; } double residual = (static_cast(unwrapped_ts90khz) - _firstTimestamp) - static_cast(tMs) * _w[0] - _w[1]; if (DelayChangeDetection(residual) && _packetCount >= _startUpFilterDelayInPackets) { // A sudden change of average network delay has been detected. // Force the filter to adjust its offset parameter by changing // the offset uncertainty. Don't do this during startup. _pP[1][1] = _pP11; } //T = [t(k) 1]'; //that = T'*w; //K = P*T/(lambda + T'*P*T); double K[2]; K[0] = _pP[0][0] * tMs + _pP[0][1]; K[1] = _pP[1][0] * tMs + _pP[1][1]; double TPT = _lambda + tMs * K[0] + K[1]; K[0] /= TPT; K[1] /= TPT; //w = w + K*(ts(k) - that); _w[0] = _w[0] + K[0] * residual; _w[1] = _w[1] + K[1] * residual; //P = 1/lambda*(P - K*T'*P); double p00 = 1 / _lambda * (_pP[0][0] - (K[0] * tMs * _pP[0][0] + K[0] * _pP[1][0])); double p01 = 1 / _lambda * (_pP[0][1] - (K[0] * tMs * _pP[0][1] + K[0] * _pP[1][1])); _pP[1][0] = 1 / _lambda * (_pP[1][0] - (K[1] * tMs * _pP[0][0] + K[1] * _pP[1][0])); _pP[1][1] = 1 / _lambda * (_pP[1][1] - (K[1] * tMs * _pP[0][1] + K[1] * _pP[1][1])); _pP[0][0] = p00; _pP[0][1] = p01; _prevUnwrappedTimestamp = unwrapped_ts90khz; if (_packetCount < _startUpFilterDelayInPackets) { _packetCount++; } _rwLock->ReleaseLockExclusive(); } int64_t TimestampExtrapolator::ExtrapolateLocalTime(uint32_t timestamp90khz) { ReadLockScoped rl(*_rwLock); int64_t localTimeMs = 0; CheckForWrapArounds(timestamp90khz); double unwrapped_ts90khz = static_cast(timestamp90khz) + _wrapArounds * ((static_cast(1) << 32) - 1); if (_packetCount == 0) { localTimeMs = -1; } else if (_packetCount < _startUpFilterDelayInPackets) { localTimeMs = _prevMs + static_cast( static_cast(unwrapped_ts90khz - _prevUnwrappedTimestamp) / 90.0 + 0.5); } else { if (_w[0] < 1e-3) { localTimeMs = _startMs; } else { double timestampDiff = unwrapped_ts90khz - static_cast(_firstTimestamp); localTimeMs = static_cast( static_cast(_startMs) + (timestampDiff - _w[1]) / _w[0] + 0.5); } } return localTimeMs; } // Investigates if the timestamp clock has overflowed since the last timestamp and // keeps track of the number of wrap arounds since reset. void TimestampExtrapolator::CheckForWrapArounds(uint32_t ts90khz) { if (_prevWrapTimestamp == -1) { _prevWrapTimestamp = ts90khz; return; } if (ts90khz < _prevWrapTimestamp) { // This difference will probably be less than -2^31 if we have had a wrap around // (e.g. timestamp = 1, _previousTimestamp = 2^32 - 1). Since it is casted to a Word32, // it should be positive. if (static_cast(ts90khz - _prevWrapTimestamp) > 0) { // Forward wrap around _wrapArounds++; } } // This difference will probably be less than -2^31 if we have had a backward wrap around. // Since it is casted to a Word32, it should be positive. else if (static_cast(_prevWrapTimestamp - ts90khz) > 0) { // Backward wrap around _wrapArounds--; } _prevWrapTimestamp = ts90khz; } bool TimestampExtrapolator::DelayChangeDetection(double error) { // CUSUM detection of sudden delay changes error = (error > 0) ? std::min(error, _accMaxError) : std::max(error, -_accMaxError); _detectorAccumulatorPos = std::max(_detectorAccumulatorPos + error - _accDrift, (double)0); _detectorAccumulatorNeg = std::min(_detectorAccumulatorNeg + error + _accDrift, (double)0); if (_detectorAccumulatorPos > _alarmThreshold || _detectorAccumulatorNeg < -_alarmThreshold) { // Alarm _detectorAccumulatorPos = _detectorAccumulatorNeg = 0; return true; } return false; } }