/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/video_engine/overuse_frame_detector.h" #include #include #include #include #include #include "webrtc/base/exp_filter.h" #include "webrtc/system_wrappers/interface/clock.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/system_wrappers/interface/logging.h" namespace webrtc { // TODO(mflodman) Test different values for all of these to trigger correctly, // avoid fluctuations etc. namespace { const int64_t kProcessIntervalMs = 5000; // Weight factor to apply to the standard deviation. const float kWeightFactor = 0.997f; // Weight factor to apply to the average. const float kWeightFactorMean = 0.98f; // Delay between consecutive rampups. (Used for quick recovery.) const int kQuickRampUpDelayMs = 10 * 1000; // Delay between rampup attempts. Initially uses standard, scales up to max. const int kStandardRampUpDelayMs = 40 * 1000; const int kMaxRampUpDelayMs = 240 * 1000; // Expontential back-off factor, to prevent annoying up-down behaviour. const double kRampUpBackoffFactor = 2.0; // Max number of overuses detected before always applying the rampup delay. const int kMaxOverusesBeforeApplyRampupDelay = 4; // The maximum exponent to use in VCMExpFilter. const float kSampleDiffMs = 33.0f; const float kMaxExp = 7.0f; } // namespace // TODO(asapersson): Remove this class. Not used. Statistics::Statistics() : sum_(0.0), count_(0), filtered_samples_(new rtc::ExpFilter(kWeightFactorMean)), filtered_variance_(new rtc::ExpFilter(kWeightFactor)) { Reset(); } void Statistics::SetOptions(const CpuOveruseOptions& options) { options_ = options; } void Statistics::Reset() { sum_ = 0.0; count_ = 0; filtered_variance_->Reset(kWeightFactor); filtered_variance_->Apply(1.0f, InitialVariance()); } void Statistics::AddSample(float sample_ms) { sum_ += sample_ms; ++count_; if (count_ < static_cast(options_.min_frame_samples)) { // Initialize filtered samples. filtered_samples_->Reset(kWeightFactorMean); filtered_samples_->Apply(1.0f, InitialMean()); return; } float exp = sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_samples_->Apply(exp, sample_ms); filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->filtered()) * (sample_ms - filtered_samples_->filtered())); } float Statistics::InitialMean() const { if (count_ == 0) return 0.0; return sum_ / count_; } float Statistics::InitialVariance() const { // Start in between the underuse and overuse threshold. float average_stddev = (options_.low_capture_jitter_threshold_ms + options_.high_capture_jitter_threshold_ms) / 2.0f; return average_stddev * average_stddev; } float Statistics::Mean() const { return filtered_samples_->filtered(); } float Statistics::StdDev() const { return sqrt(std::max(filtered_variance_->filtered(), 0.0f)); } uint64_t Statistics::Count() const { return count_; } // Class for calculating the average encode time. class OveruseFrameDetector::EncodeTimeAvg { public: EncodeTimeAvg() : kWeightFactor(0.5f), kInitialAvgEncodeTimeMs(5.0f), filtered_encode_time_ms_(new rtc::ExpFilter(kWeightFactor)) { filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs); } ~EncodeTimeAvg() {} void AddSample(float encode_time_ms, int64_t diff_last_sample_ms) { float exp = diff_last_sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_encode_time_ms_->Apply(exp, encode_time_ms); } int Value() const { return static_cast(filtered_encode_time_ms_->filtered() + 0.5); } private: const float kWeightFactor; const float kInitialAvgEncodeTimeMs; scoped_ptr filtered_encode_time_ms_; }; // Class for calculating the processing usage on the send-side (the average // processing time of a frame divided by the average time difference between // captured frames). class OveruseFrameDetector::SendProcessingUsage { public: SendProcessingUsage() : kWeightFactorFrameDiff(0.998f), kWeightFactorProcessing(0.995f), kInitialSampleDiffMs(40.0f), kMaxSampleDiffMs(45.0f), count_(0), filtered_processing_ms_(new rtc::ExpFilter(kWeightFactorProcessing)), filtered_frame_diff_ms_(new rtc::ExpFilter(kWeightFactorFrameDiff)) { Reset(); } ~SendProcessingUsage() {} void SetOptions(const CpuOveruseOptions& options) { options_ = options; } void Reset() { count_ = 0; filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff); filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs); filtered_processing_ms_->Reset(kWeightFactorProcessing); filtered_processing_ms_->Apply(1.0f, InitialProcessingMs()); } void AddCaptureSample(float sample_ms) { float exp = sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_frame_diff_ms_->Apply(exp, sample_ms); } void AddSample(float processing_ms, int64_t diff_last_sample_ms) { ++count_; float exp = diff_last_sample_ms / kSampleDiffMs; exp = std::min(exp, kMaxExp); filtered_processing_ms_->Apply(exp, processing_ms); } int Value() const { if (count_ < static_cast(options_.min_frame_samples)) { return static_cast(InitialUsageInPercent() + 0.5f); } float frame_diff_ms = std::max(filtered_frame_diff_ms_->filtered(), 1.0f); frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs); float encode_usage_percent = 100.0f * filtered_processing_ms_->filtered() / frame_diff_ms; return static_cast(encode_usage_percent + 0.5); } private: float InitialUsageInPercent() const { // Start in between the underuse and overuse threshold. return (options_.low_encode_usage_threshold_percent + options_.high_encode_usage_threshold_percent) / 2.0f; } float InitialProcessingMs() const { return InitialUsageInPercent() * kInitialSampleDiffMs / 100; } const float kWeightFactorFrameDiff; const float kWeightFactorProcessing; const float kInitialSampleDiffMs; const float kMaxSampleDiffMs; uint64_t count_; CpuOveruseOptions options_; scoped_ptr filtered_processing_ms_; scoped_ptr filtered_frame_diff_ms_; }; // Class for calculating the processing time of frames. class OveruseFrameDetector::FrameQueue { public: FrameQueue() : last_processing_time_ms_(-1) {} ~FrameQueue() {} // Called when a frame is captured. // Starts the measuring of the processing time of the frame. void Start(int64_t capture_time, int64_t now) { const size_t kMaxSize = 90; // Allows for processing time of 1.5s at 60fps. if (frame_times_.size() > kMaxSize) { LOG(LS_WARNING) << "Max size reached, removed oldest frame."; frame_times_.erase(frame_times_.begin()); } if (frame_times_.find(capture_time) != frame_times_.end()) { // Frame should not exist. assert(false); return; } frame_times_[capture_time] = now; } // Called when the processing of a frame has finished. // Returns the processing time of the frame. int End(int64_t capture_time, int64_t now) { std::map::iterator it = frame_times_.find(capture_time); if (it == frame_times_.end()) { return -1; } // Remove any old frames up to current. // Old frames have been skipped by the capture process thread. // TODO(asapersson): Consider measuring time from first frame in list. last_processing_time_ms_ = now - (*it).second; frame_times_.erase(frame_times_.begin(), ++it); return last_processing_time_ms_; } void Reset() { frame_times_.clear(); } int NumFrames() const { return frame_times_.size(); } int last_processing_time_ms() const { return last_processing_time_ms_; } private: // Captured frames mapped by the capture time. std::map frame_times_; int last_processing_time_ms_; }; // TODO(asapersson): Remove this class. Not used. // Class for calculating the capture queue delay change. class OveruseFrameDetector::CaptureQueueDelay { public: CaptureQueueDelay() : kWeightFactor(0.5f), delay_ms_(0), filtered_delay_ms_per_s_(new rtc::ExpFilter(kWeightFactor)) { filtered_delay_ms_per_s_->Apply(1.0f, 0.0f); } ~CaptureQueueDelay() {} void FrameCaptured(int64_t now) { const size_t kMaxSize = 200; if (frames_.size() > kMaxSize) { frames_.pop_front(); } frames_.push_back(now); } void FrameProcessingStarted(int64_t now) { if (frames_.empty()) { return; } delay_ms_ = now - frames_.front(); frames_.pop_front(); } void CalculateDelayChange(int64_t diff_last_sample_ms) { if (diff_last_sample_ms <= 0) { return; } float exp = static_cast(diff_last_sample_ms) / kProcessIntervalMs; exp = std::min(exp, kMaxExp); filtered_delay_ms_per_s_->Apply(exp, delay_ms_ * 1000.0f / diff_last_sample_ms); ClearFrames(); } void ClearFrames() { frames_.clear(); } int delay_ms() const { return delay_ms_; } int Value() const { return static_cast(filtered_delay_ms_per_s_->filtered() + 0.5); } private: const float kWeightFactor; std::list frames_; int delay_ms_; scoped_ptr filtered_delay_ms_per_s_; }; OveruseFrameDetector::OveruseFrameDetector(Clock* clock) : crit_(CriticalSectionWrapper::CreateCriticalSection()), observer_(NULL), clock_(clock), next_process_time_(clock_->TimeInMilliseconds()), num_process_times_(0), last_capture_time_(0), last_overuse_time_(0), checks_above_threshold_(0), num_overuse_detections_(0), last_rampup_time_(0), in_quick_rampup_(false), current_rampup_delay_ms_(kStandardRampUpDelayMs), num_pixels_(0), last_encode_sample_ms_(0), encode_time_(new EncodeTimeAvg()), usage_(new SendProcessingUsage()), frame_queue_(new FrameQueue()), last_sample_time_ms_(0), capture_queue_delay_(new CaptureQueueDelay()) { } OveruseFrameDetector::~OveruseFrameDetector() { } void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) { CriticalSectionScoped cs(crit_.get()); observer_ = observer; } void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) { assert(options.min_frame_samples > 0); CriticalSectionScoped cs(crit_.get()); if (options_.Equals(options)) { return; } options_ = options; capture_deltas_.SetOptions(options); usage_->SetOptions(options); ResetAll(num_pixels_); } int OveruseFrameDetector::CaptureQueueDelayMsPerS() const { CriticalSectionScoped cs(crit_.get()); return capture_queue_delay_->delay_ms(); } int OveruseFrameDetector::LastProcessingTimeMs() const { CriticalSectionScoped cs(crit_.get()); return frame_queue_->last_processing_time_ms(); } int OveruseFrameDetector::FramesInQueue() const { CriticalSectionScoped cs(crit_.get()); return frame_queue_->NumFrames(); } void OveruseFrameDetector::GetCpuOveruseMetrics( CpuOveruseMetrics* metrics) const { CriticalSectionScoped cs(crit_.get()); metrics->capture_jitter_ms = static_cast(capture_deltas_.StdDev() + 0.5); metrics->avg_encode_time_ms = encode_time_->Value(); metrics->encode_rsd = 0; metrics->encode_usage_percent = usage_->Value(); metrics->capture_queue_delay_ms_per_s = capture_queue_delay_->Value(); } int32_t OveruseFrameDetector::TimeUntilNextProcess() { CriticalSectionScoped cs(crit_.get()); return next_process_time_ - clock_->TimeInMilliseconds(); } bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const { if (num_pixels != num_pixels_) { return true; } return false; } bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const { if (last_capture_time_ == 0) { return false; } return (now - last_capture_time_) > options_.frame_timeout_interval_ms; } void OveruseFrameDetector::ResetAll(int num_pixels) { num_pixels_ = num_pixels; capture_deltas_.Reset(); usage_->Reset(); frame_queue_->Reset(); capture_queue_delay_->ClearFrames(); last_capture_time_ = 0; num_process_times_ = 0; } void OveruseFrameDetector::FrameCaptured(int width, int height, int64_t capture_time_ms) { CriticalSectionScoped cs(crit_.get()); int64_t now = clock_->TimeInMilliseconds(); if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) { ResetAll(width * height); } if (last_capture_time_ != 0) { capture_deltas_.AddSample(now - last_capture_time_); usage_->AddCaptureSample(now - last_capture_time_); } last_capture_time_ = now; capture_queue_delay_->FrameCaptured(now); if (options_.enable_extended_processing_usage) { frame_queue_->Start(capture_time_ms, now); } } void OveruseFrameDetector::FrameProcessingStarted() { CriticalSectionScoped cs(crit_.get()); capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds()); } void OveruseFrameDetector::FrameEncoded(int encode_time_ms) { CriticalSectionScoped cs(crit_.get()); int64_t now = clock_->TimeInMilliseconds(); if (last_encode_sample_ms_ != 0) { int64_t diff_ms = now - last_encode_sample_ms_; encode_time_->AddSample(encode_time_ms, diff_ms); } last_encode_sample_ms_ = now; if (!options_.enable_extended_processing_usage) { AddProcessingTime(encode_time_ms); } } void OveruseFrameDetector::FrameSent(int64_t capture_time_ms) { CriticalSectionScoped cs(crit_.get()); if (!options_.enable_extended_processing_usage) { return; } int delay_ms = frame_queue_->End(capture_time_ms, clock_->TimeInMilliseconds()); if (delay_ms > 0) { AddProcessingTime(delay_ms); } } void OveruseFrameDetector::AddProcessingTime(int elapsed_ms) { int64_t now = clock_->TimeInMilliseconds(); if (last_sample_time_ms_ != 0) { int64_t diff_ms = now - last_sample_time_ms_; usage_->AddSample(elapsed_ms, diff_ms); } last_sample_time_ms_ = now; } int32_t OveruseFrameDetector::Process() { CriticalSectionScoped cs(crit_.get()); int64_t now = clock_->TimeInMilliseconds(); // Used to protect against Process() being called too often. if (now < next_process_time_) return 0; int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs; next_process_time_ = now + kProcessIntervalMs; ++num_process_times_; capture_queue_delay_->CalculateDelayChange(diff_ms); if (num_process_times_ <= options_.min_process_count) { return 0; } if (IsOverusing()) { // If the last thing we did was going up, and now have to back down, we need // to check if this peak was short. If so we should back off to avoid going // back and forth between this load, the system doesn't seem to handle it. bool check_for_backoff = last_rampup_time_ > last_overuse_time_; if (check_for_backoff) { if (now - last_rampup_time_ < kStandardRampUpDelayMs || num_overuse_detections_ > kMaxOverusesBeforeApplyRampupDelay) { // Going up was not ok for very long, back off. current_rampup_delay_ms_ *= kRampUpBackoffFactor; if (current_rampup_delay_ms_ > kMaxRampUpDelayMs) current_rampup_delay_ms_ = kMaxRampUpDelayMs; } else { // Not currently backing off, reset rampup delay. current_rampup_delay_ms_ = kStandardRampUpDelayMs; } } last_overuse_time_ = now; in_quick_rampup_ = false; checks_above_threshold_ = 0; ++num_overuse_detections_; if (observer_ != NULL) observer_->OveruseDetected(); } else if (IsUnderusing(now)) { last_rampup_time_ = now; in_quick_rampup_ = true; if (observer_ != NULL) observer_->NormalUsage(); } int rampup_delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; LOG(LS_VERBOSE) << " Frame stats: capture avg: " << capture_deltas_.Mean() << " capture stddev " << capture_deltas_.StdDev() << " encode usage " << usage_->Value() << " overuse detections " << num_overuse_detections_ << " rampup delay " << rampup_delay; return 0; } bool OveruseFrameDetector::IsOverusing() { bool overusing = false; if (options_.enable_capture_jitter_method) { overusing = capture_deltas_.StdDev() >= options_.high_capture_jitter_threshold_ms; } else if (options_.enable_encode_usage_method) { overusing = usage_->Value() >= options_.high_encode_usage_threshold_percent; } if (overusing) { ++checks_above_threshold_; } else { checks_above_threshold_ = 0; } return checks_above_threshold_ >= options_.high_threshold_consecutive_count; } bool OveruseFrameDetector::IsUnderusing(int64_t time_now) { int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_; if (time_now < last_rampup_time_ + delay) return false; bool underusing = false; if (options_.enable_capture_jitter_method) { underusing = capture_deltas_.StdDev() < options_.low_capture_jitter_threshold_ms; } else if (options_.enable_encode_usage_method) { underusing = usage_->Value() < options_.low_encode_usage_threshold_percent; } return underusing; } } // namespace webrtc