/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "testing/gmock/include/gmock/gmock.h" #include "testing/gtest/include/gtest/gtest.h" #include "webrtc/system_wrappers/interface/clock.h" #include "webrtc/system_wrappers/interface/scoped_ptr.h" #include "webrtc/video_engine/include/vie_base.h" #include "webrtc/video_engine/overuse_frame_detector.h" namespace webrtc { namespace { const int kWidth = 640; const int kHeight = 480; const int kFrameInterval33ms = 33; const int kProcessIntervalMs = 5000; } // namespace class MockCpuOveruseObserver : public CpuOveruseObserver { public: MockCpuOveruseObserver() {} virtual ~MockCpuOveruseObserver() {} MOCK_METHOD0(OveruseDetected, void()); MOCK_METHOD0(NormalUsage, void()); }; class CpuOveruseObserverImpl : public CpuOveruseObserver { public: CpuOveruseObserverImpl() : overuse_(0), normaluse_(0) {} virtual ~CpuOveruseObserverImpl() {} void OveruseDetected() { ++overuse_; } void NormalUsage() { ++normaluse_; } int overuse_; int normaluse_; }; class OveruseFrameDetectorTest : public ::testing::Test { protected: virtual void SetUp() { clock_.reset(new SimulatedClock(1234)); observer_.reset(new MockCpuOveruseObserver()); overuse_detector_.reset(new OveruseFrameDetector(clock_.get())); options_.low_capture_jitter_threshold_ms = 10.0f; options_.high_capture_jitter_threshold_ms = 15.0f; options_.min_process_count = 0; overuse_detector_->SetOptions(options_); overuse_detector_->SetObserver(observer_.get()); } int InitialJitter() { return ((options_.low_capture_jitter_threshold_ms + options_.high_capture_jitter_threshold_ms) / 2.0f) + 0.5; } int InitialUsage() { return ((options_.low_encode_usage_threshold_percent + options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5; } void InsertFramesWithInterval( size_t num_frames, int interval_ms, int width, int height) { while (num_frames-- > 0) { clock_->AdvanceTimeMilliseconds(interval_ms); overuse_detector_->FrameCaptured(width, height, clock_->TimeInMilliseconds()); } } void InsertAndSendFramesWithInterval( int num_frames, int interval_ms, int width, int height, int delay_ms) { while (num_frames-- > 0) { int64_t capture_time_ms = clock_->TimeInMilliseconds(); overuse_detector_->FrameCaptured(width, height, capture_time_ms); clock_->AdvanceTimeMilliseconds(delay_ms); overuse_detector_->FrameEncoded(delay_ms); overuse_detector_->FrameSent(capture_time_ms); clock_->AdvanceTimeMilliseconds(interval_ms - delay_ms); } } void TriggerOveruse(int num_times) { for (int i = 0; i < num_times; ++i) { InsertFramesWithInterval(200, kFrameInterval33ms, kWidth, kHeight); InsertFramesWithInterval(50, 110, kWidth, kHeight); overuse_detector_->Process(); } } void TriggerUnderuse() { InsertFramesWithInterval(900, kFrameInterval33ms, kWidth, kHeight); overuse_detector_->Process(); } void TriggerOveruseWithProcessingUsage(int num_times) { const int kDelayMs = 32; for (int i = 0; i < num_times; ++i) { InsertAndSendFramesWithInterval( 1000, kFrameInterval33ms, kWidth, kHeight, kDelayMs); overuse_detector_->Process(); } } void TriggerUnderuseWithProcessingUsage() { const int kDelayMs1 = 5; const int kDelayMs2 = 6; InsertAndSendFramesWithInterval( 1300, kFrameInterval33ms, kWidth, kHeight, kDelayMs1); InsertAndSendFramesWithInterval( 1, kFrameInterval33ms, kWidth, kHeight, kDelayMs2); overuse_detector_->Process(); } int CaptureJitterMs() { CpuOveruseMetrics metrics; overuse_detector_->GetCpuOveruseMetrics(&metrics); return metrics.capture_jitter_ms; } int AvgEncodeTimeMs() { CpuOveruseMetrics metrics; overuse_detector_->GetCpuOveruseMetrics(&metrics); return metrics.avg_encode_time_ms; } int UsagePercent() { CpuOveruseMetrics metrics; overuse_detector_->GetCpuOveruseMetrics(&metrics); return metrics.encode_usage_percent; } CpuOveruseOptions options_; scoped_ptr clock_; scoped_ptr observer_; scoped_ptr overuse_detector_; }; // enable_capture_jitter_method = true; // CaptureJitterMs() > high_capture_jitter_threshold_ms => overuse. // CaptureJitterMs() < low_capture_jitter_threshold_ms => underuse. TEST_F(OveruseFrameDetectorTest, TriggerOveruse) { // capture_jitter > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) { // capture_jitter > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruse(options_.high_threshold_consecutive_count); // capture_jitter < low => underuse EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) { overuse_detector_->SetObserver(NULL); EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithMethodDisabled) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = false; overuse_detector_->SetOptions(options_); EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(2); TriggerOveruse(options_.high_threshold_consecutive_count); TriggerOveruse(options_.high_threshold_consecutive_count); EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1)); TriggerUnderuse(); } TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) { CpuOveruseObserverImpl overuse_observer_; overuse_detector_->SetObserver(&overuse_observer_); options_.min_process_count = 1; overuse_detector_->SetOptions(options_); InsertFramesWithInterval(1200, kFrameInterval33ms, kWidth, kHeight); overuse_detector_->Process(); EXPECT_EQ(0, overuse_observer_.normaluse_); clock_->AdvanceTimeMilliseconds(kProcessIntervalMs); overuse_detector_->Process(); EXPECT_EQ(1, overuse_observer_.normaluse_); } TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) { EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(64); for(size_t i = 0; i < 64; ++i) { TriggerOveruse(options_.high_threshold_consecutive_count); } } TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); options_.high_threshold_consecutive_count = 2; overuse_detector_->SetOptions(options_); TriggerOveruse(2); } TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) { EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); options_.high_threshold_consecutive_count = 2; overuse_detector_->SetOptions(options_); TriggerOveruse(1); } TEST_F(OveruseFrameDetectorTest, GetCpuOveruseMetrics) { CpuOveruseMetrics metrics; overuse_detector_->GetCpuOveruseMetrics(&metrics); EXPECT_GT(metrics.capture_jitter_ms, 0); EXPECT_GT(metrics.avg_encode_time_ms, 0); EXPECT_GT(metrics.encode_usage_percent, 0); EXPECT_GE(metrics.capture_queue_delay_ms_per_s, 0); EXPECT_GE(metrics.encode_rsd, 0); } TEST_F(OveruseFrameDetectorTest, CaptureJitter) { EXPECT_EQ(InitialJitter(), CaptureJitterMs()); InsertFramesWithInterval(1000, kFrameInterval33ms, kWidth, kHeight); EXPECT_NE(InitialJitter(), CaptureJitterMs()); } TEST_F(OveruseFrameDetectorTest, CaptureJitterResetAfterResolutionChange) { EXPECT_EQ(InitialJitter(), CaptureJitterMs()); InsertFramesWithInterval(1000, kFrameInterval33ms, kWidth, kHeight); EXPECT_NE(InitialJitter(), CaptureJitterMs()); // Verify reset. InsertFramesWithInterval(1, kFrameInterval33ms, kWidth, kHeight + 1); EXPECT_EQ(InitialJitter(), CaptureJitterMs()); } TEST_F(OveruseFrameDetectorTest, CaptureJitterResetAfterFrameTimeout) { EXPECT_EQ(InitialJitter(), CaptureJitterMs()); InsertFramesWithInterval(1000, kFrameInterval33ms, kWidth, kHeight); EXPECT_NE(InitialJitter(), CaptureJitterMs()); InsertFramesWithInterval( 1, options_.frame_timeout_interval_ms, kWidth, kHeight); EXPECT_NE(InitialJitter(), CaptureJitterMs()); // Verify reset. InsertFramesWithInterval( 1, options_.frame_timeout_interval_ms + 1, kWidth, kHeight); EXPECT_EQ(InitialJitter(), CaptureJitterMs()); } TEST_F(OveruseFrameDetectorTest, CaptureJitterResetAfterChangingThreshold) { EXPECT_EQ(InitialJitter(), CaptureJitterMs()); options_.high_capture_jitter_threshold_ms = 90.0f; overuse_detector_->SetOptions(options_); EXPECT_EQ(InitialJitter(), CaptureJitterMs()); options_.low_capture_jitter_threshold_ms = 30.0f; overuse_detector_->SetOptions(options_); EXPECT_EQ(InitialJitter(), CaptureJitterMs()); } TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdatingCaptureJitter) { options_.min_frame_samples = 40; overuse_detector_->SetOptions(options_); InsertFramesWithInterval(40, kFrameInterval33ms, kWidth, kHeight); EXPECT_EQ(InitialJitter(), CaptureJitterMs()); } TEST_F(OveruseFrameDetectorTest, NoCaptureQueueDelay) { EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 0); overuse_detector_->FrameCaptured( kWidth, kHeight, clock_->TimeInMilliseconds()); overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 0); } TEST_F(OveruseFrameDetectorTest, CaptureQueueDelay) { overuse_detector_->FrameCaptured( kWidth, kHeight, clock_->TimeInMilliseconds()); clock_->AdvanceTimeMilliseconds(100); overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100); } TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayMultipleFrames) { overuse_detector_->FrameCaptured( kWidth, kHeight, clock_->TimeInMilliseconds()); clock_->AdvanceTimeMilliseconds(10); overuse_detector_->FrameCaptured( kWidth, kHeight, clock_->TimeInMilliseconds()); clock_->AdvanceTimeMilliseconds(20); overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 30); overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 20); } TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayResetAtResolutionSwitch) { overuse_detector_->FrameCaptured( kWidth, kHeight, clock_->TimeInMilliseconds()); clock_->AdvanceTimeMilliseconds(10); overuse_detector_->FrameCaptured( kWidth, kHeight + 1, clock_->TimeInMilliseconds()); clock_->AdvanceTimeMilliseconds(20); overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 20); } TEST_F(OveruseFrameDetectorTest, CaptureQueueDelayNoMatchingCapturedFrame) { overuse_detector_->FrameCaptured( kWidth, kHeight, clock_->TimeInMilliseconds()); clock_->AdvanceTimeMilliseconds(100); overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100); // No new captured frame. The last delay should be reported. overuse_detector_->FrameProcessingStarted(); EXPECT_EQ(overuse_detector_->CaptureQueueDelayMsPerS(), 100); } TEST_F(OveruseFrameDetectorTest, FrameDelay_OneFrameDisabled) { options_.enable_extended_processing_usage = false; overuse_detector_->SetOptions(options_); const int kProcessingTimeMs = 100; overuse_detector_->FrameCaptured(kWidth, kHeight, 33); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); overuse_detector_->FrameSent(33); EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs()); } TEST_F(OveruseFrameDetectorTest, FrameDelay_OneFrame) { options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); const int kProcessingTimeMs = 100; overuse_detector_->FrameCaptured(kWidth, kHeight, 33); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs()); overuse_detector_->FrameSent(33); EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs()); EXPECT_EQ(0, overuse_detector_->FramesInQueue()); } TEST_F(OveruseFrameDetectorTest, FrameDelay_TwoFrames) { options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); const int kProcessingTimeMs1 = 100; const int kProcessingTimeMs2 = 50; const int kTimeBetweenFramesMs = 200; overuse_detector_->FrameCaptured(kWidth, kHeight, 33); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs1); overuse_detector_->FrameSent(33); EXPECT_EQ(kProcessingTimeMs1, overuse_detector_->LastProcessingTimeMs()); clock_->AdvanceTimeMilliseconds(kTimeBetweenFramesMs); overuse_detector_->FrameCaptured(kWidth, kHeight, 66); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs2); overuse_detector_->FrameSent(66); EXPECT_EQ(kProcessingTimeMs2, overuse_detector_->LastProcessingTimeMs()); } TEST_F(OveruseFrameDetectorTest, FrameDelay_MaxQueueSize) { options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); const int kMaxQueueSize = 91; for (int i = 0; i < kMaxQueueSize * 2; ++i) { overuse_detector_->FrameCaptured(kWidth, kHeight, i); } EXPECT_EQ(kMaxQueueSize, overuse_detector_->FramesInQueue()); } TEST_F(OveruseFrameDetectorTest, FrameDelay_NonProcessedFramesRemoved) { options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); const int kProcessingTimeMs = 100; overuse_detector_->FrameCaptured(kWidth, kHeight, 33); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); overuse_detector_->FrameCaptured(kWidth, kHeight, 35); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); overuse_detector_->FrameCaptured(kWidth, kHeight, 66); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); overuse_detector_->FrameCaptured(kWidth, kHeight, 99); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs()); EXPECT_EQ(4, overuse_detector_->FramesInQueue()); overuse_detector_->FrameSent(66); // Frame 33, 35 removed, 66 processed, 99 not processed. EXPECT_EQ(2 * kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs()); EXPECT_EQ(1, overuse_detector_->FramesInQueue()); overuse_detector_->FrameSent(99); EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs()); EXPECT_EQ(0, overuse_detector_->FramesInQueue()); } TEST_F(OveruseFrameDetectorTest, FrameDelay_ResetClearsFrames) { options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); const int kProcessingTimeMs = 100; overuse_detector_->FrameCaptured(kWidth, kHeight, 33); EXPECT_EQ(1, overuse_detector_->FramesInQueue()); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); // Verify reset (resolution changed). overuse_detector_->FrameCaptured(kWidth, kHeight + 1, 66); EXPECT_EQ(1, overuse_detector_->FramesInQueue()); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); overuse_detector_->FrameSent(66); EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs()); EXPECT_EQ(0, overuse_detector_->FramesInQueue()); } TEST_F(OveruseFrameDetectorTest, FrameDelay_NonMatchingSendFrameIgnored) { options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); const int kProcessingTimeMs = 100; overuse_detector_->FrameCaptured(kWidth, kHeight, 33); clock_->AdvanceTimeMilliseconds(kProcessingTimeMs); overuse_detector_->FrameSent(34); EXPECT_EQ(-1, overuse_detector_->LastProcessingTimeMs()); overuse_detector_->FrameSent(33); EXPECT_EQ(kProcessingTimeMs, overuse_detector_->LastProcessingTimeMs()); } TEST_F(OveruseFrameDetectorTest, EncodedFrame) { const int kInitialAvgEncodeTimeInMs = 5; EXPECT_EQ(kInitialAvgEncodeTimeInMs, AvgEncodeTimeMs()); for (int i = 0; i < 30; i++) { clock_->AdvanceTimeMilliseconds(33); overuse_detector_->FrameEncoded(2); } EXPECT_EQ(2, AvgEncodeTimeMs()); } TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) { EXPECT_EQ(InitialUsage(), UsagePercent()); } TEST_F(OveruseFrameDetectorTest, ProcessingUsage) { const int kProcessingTimeMs = 5; InsertAndSendFramesWithInterval( 1000, kFrameInterval33ms, kWidth, kHeight, kProcessingTimeMs); EXPECT_EQ(kProcessingTimeMs * 100 / kFrameInterval33ms, UsagePercent()); } TEST_F(OveruseFrameDetectorTest, ProcessingUsageResetAfterChangingThreshold) { EXPECT_EQ(InitialUsage(), UsagePercent()); options_.high_encode_usage_threshold_percent = 100; overuse_detector_->SetOptions(options_); EXPECT_EQ(InitialUsage(), UsagePercent()); options_.low_encode_usage_threshold_percent = 20; overuse_detector_->SetOptions(options_); EXPECT_EQ(InitialUsage(), UsagePercent()); } // enable_encode_usage_method = true; // UsagePercent() > high_encode_usage_threshold_percent => overuse. // UsagePercent() < low_encode_usage_threshold_percent => underuse. TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithProcessingUsage) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = true; options_.enable_extended_processing_usage = false; overuse_detector_->SetOptions(options_); // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithProcessingUsage) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = true; options_.enable_extended_processing_usage = false; overuse_detector_->SetOptions(options_); // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1)); TriggerUnderuseWithProcessingUsage(); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithProcessingUsageMethodDisabled) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = false; options_.enable_extended_processing_usage = false; overuse_detector_->SetOptions(options_); // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); TriggerUnderuseWithProcessingUsage(); } // enable_extended_processing_usage = true; // enable_encode_usage_method = true; // UsagePercent() > high_encode_usage_threshold_percent => overuse. // UsagePercent() < low_encode_usage_threshold_percent => underuse. TEST_F(OveruseFrameDetectorTest, TriggerOveruseWithExtendedProcessingUsage) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = true; options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithExtendedProcessingUsage) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = true; options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1); TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1)); TriggerUnderuseWithProcessingUsage(); } TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithExtendedProcessingUsageMethodDisabled) { options_.enable_capture_jitter_method = false; options_.enable_encode_usage_method = false; options_.enable_extended_processing_usage = true; overuse_detector_->SetOptions(options_); // usage > high => overuse EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0); TriggerOveruseWithProcessingUsage(options_.high_threshold_consecutive_count); // usage < low => underuse EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0); TriggerUnderuseWithProcessingUsage(); } } // namespace webrtc