summaryrefslogtreecommitdiff
path: root/common_audio/resampler/push_sinc_resampler_unittest.cc
blob: 1ca4fdf93644e81467b0df32a091921df030898a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>

#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
#include "webrtc/common_audio/resampler/sinusoidal_linear_chirp_source.h"
#include "webrtc/system_wrappers/interface/scoped_ptr.h"
#include "webrtc/system_wrappers/interface/tick_util.h"
#include "webrtc/typedefs.h"

namespace webrtc {

typedef std::tr1::tuple<int, int, double, double> PushSincResamplerTestData;
class PushSincResamplerTest
    : public testing::TestWithParam<PushSincResamplerTestData> {
 public:
  PushSincResamplerTest()
      : input_rate_(std::tr1::get<0>(GetParam())),
        output_rate_(std::tr1::get<1>(GetParam())),
        rms_error_(std::tr1::get<2>(GetParam())),
        low_freq_error_(std::tr1::get<3>(GetParam())) {
  }

  virtual ~PushSincResamplerTest() {}

 protected:
  void ResampleBenchmarkTest(bool int_format);
  void ResampleTest(bool int_format);

  int input_rate_;
  int output_rate_;
  double rms_error_;
  double low_freq_error_;
};

class ZeroSource : public SincResamplerCallback {
 public:
  void Run(int frames, float* destination) {
    memset(destination, 0, sizeof(float) * frames);
  }
};

void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) {
  const int input_samples = input_rate_ / 100;
  const int output_samples = output_rate_ / 100;
  const int kResampleIterations = 500000;

  // Source for data to be resampled.
  ZeroSource resampler_source;

  scoped_ptr<float[]> resampled_destination(new float[output_samples]);
  scoped_ptr<float[]> source(new float[input_samples]);
  scoped_ptr<int16_t[]> source_int(new int16_t[input_samples]);
  scoped_ptr<int16_t[]> destination_int(new int16_t[output_samples]);

  resampler_source.Run(input_samples, source.get());
  for (int i = 0; i < input_samples; ++i) {
    source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5));
  }

  printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n",
         kResampleIterations, input_rate_, output_rate_);
  const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
  SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize,
                               &resampler_source);
  TickTime start = TickTime::Now();
  for (int i = 0; i < kResampleIterations; ++i) {
    sinc_resampler.Resample(output_samples, resampled_destination.get());
  }
  double total_time_sinc_us = (TickTime::Now() - start).Microseconds();
  printf("SincResampler took %.2f us per frame.\n",
         total_time_sinc_us / kResampleIterations);

  PushSincResampler resampler(input_samples, output_samples);
  start = TickTime::Now();
  if (int_format) {
    for (int i = 0; i < kResampleIterations; ++i) {
      EXPECT_EQ(output_samples,
                resampler.Resample(source_int.get(),
                                   input_samples,
                                   destination_int.get(),
                                   output_samples));
    }
  } else {
    for (int i = 0; i < kResampleIterations; ++i) {
      EXPECT_EQ(output_samples,
                resampler.Resample(source.get(),
                                   input_samples,
                                   resampled_destination.get(),
                                   output_samples));
    }
  }
  double total_time_us = (TickTime::Now() - start).Microseconds();
  printf("PushSincResampler took %.2f us per frame; which is a %.1f%% overhead "
         "on SincResampler.\n\n", total_time_us / kResampleIterations,
         (total_time_us - total_time_sinc_us) / total_time_sinc_us * 100);
}

// Disabled because it takes too long to run routinely. Use for performance
// benchmarking when needed.
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkInt) {
  ResampleBenchmarkTest(true);
}

TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) {
  ResampleBenchmarkTest(false);
}

// Tests resampling using a given input and output sample rate.
void PushSincResamplerTest::ResampleTest(bool int_format) {
  // Make comparisons using one second of data.
  static const double kTestDurationSecs = 1;
  // 10 ms blocks.
  const int kNumBlocks = kTestDurationSecs * 100;
  const int input_block_size = input_rate_ / 100;
  const int output_block_size = output_rate_ / 100;
  const int input_samples = kTestDurationSecs * input_rate_;
  const int output_samples = kTestDurationSecs * output_rate_;

  // Nyquist frequency for the input sampling rate.
  const double input_nyquist_freq = 0.5 * input_rate_;

  // Source for data to be resampled.
  SinusoidalLinearChirpSource resampler_source(
      input_rate_, input_samples, input_nyquist_freq, 0);

  PushSincResampler resampler(input_block_size, output_block_size);

  // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
  // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
  scoped_ptr<float[]> resampled_destination(new float[output_samples]);
  scoped_ptr<float[]> pure_destination(new float[output_samples]);
  scoped_ptr<float[]> source(new float[input_samples]);
  scoped_ptr<int16_t[]> source_int(new int16_t[input_block_size]);
  scoped_ptr<int16_t[]> destination_int(new int16_t[output_block_size]);

  // The sinc resampler has an implicit delay of approximately half the kernel
  // size at the input sample rate. By moving to a push model, this delay
  // becomes explicit and is managed by zero-stuffing in PushSincResampler. We
  // deal with it in the test by delaying the "pure" source to match. It must be
  // checked before the first call to Resample(), because ChunkSize() will
  // change afterwards.
  const int output_delay_samples = output_block_size -
      resampler.get_resampler_for_testing()->ChunkSize();

  // Generate resampled signal.
  // With the PushSincResampler, we produce the signal block-by-10ms-block
  // rather than in a single pass, to exercise how it will be used in WebRTC.
  resampler_source.Run(input_samples, source.get());
  if (int_format) {
    for (int i = 0; i < kNumBlocks; ++i) {
      ScaleAndRoundToInt16(
          &source[i * input_block_size], input_block_size, source_int.get());
      EXPECT_EQ(output_block_size,
                resampler.Resample(source_int.get(),
                                   input_block_size,
                                   destination_int.get(),
                                   output_block_size));
      ScaleToFloat(destination_int.get(),
                   output_block_size,
                   &resampled_destination[i * output_block_size]);
    }
  } else {
    for (int i = 0; i < kNumBlocks; ++i) {
      EXPECT_EQ(
          output_block_size,
          resampler.Resample(&source[i * input_block_size],
                             input_block_size,
                             &resampled_destination[i * output_block_size],
                             output_block_size));
    }
  }

  // Generate pure signal.
  SinusoidalLinearChirpSource pure_source(
      output_rate_, output_samples, input_nyquist_freq, output_delay_samples);
  pure_source.Run(output_samples, pure_destination.get());

  // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
  // we refer to as low and high.
  static const double kLowFrequencyNyquistRange = 0.7;
  static const double kHighFrequencyNyquistRange = 0.9;

  // Calculate Root-Mean-Square-Error and maximum error for the resampling.
  double sum_of_squares = 0;
  double low_freq_max_error = 0;
  double high_freq_max_error = 0;
  int minimum_rate = std::min(input_rate_, output_rate_);
  double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
  double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;

  for (int i = 0; i < output_samples; ++i) {
    double error = fabs(resampled_destination[i] - pure_destination[i]);

    if (pure_source.Frequency(i) < low_frequency_range) {
      if (error > low_freq_max_error)
        low_freq_max_error = error;
    } else if (pure_source.Frequency(i) < high_frequency_range) {
      if (error > high_freq_max_error)
        high_freq_max_error = error;
    }
    // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.

    sum_of_squares += error * error;
  }

  double rms_error = sqrt(sum_of_squares / output_samples);

  // Convert each error to dbFS.
  #define DBFS(x) 20 * log10(x)
  rms_error = DBFS(rms_error);
  // In order to keep the thresholds in this test identical to SincResamplerTest
  // we must account for the quantization error introduced by truncating from
  // float to int. This happens twice (once at input and once at output) and we
  // allow for the maximum possible error (1 / 32767) for each step.
  //
  // The quantization error is insignificant in the RMS calculation so does not
  // need to be accounted for there.
  low_freq_max_error = DBFS(low_freq_max_error - 2.0 / 32767);
  high_freq_max_error = DBFS(high_freq_max_error - 2.0 / 32767);

  EXPECT_LE(rms_error, rms_error_);
  EXPECT_LE(low_freq_max_error, low_freq_error_);

  // All conversions currently have a high frequency error around -6 dbFS.
  static const double kHighFrequencyMaxError = -6.02;
  EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
}

TEST_P(PushSincResamplerTest, ResampleInt) { ResampleTest(true); }

TEST_P(PushSincResamplerTest, ResampleFloat) { ResampleTest(false); }

// Almost all conversions have an RMS error of around -14 dbFS.
static const double kResamplingRMSError = -14.42;

// Thresholds chosen arbitrarily based on what each resampling reported during
// testing.  All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
INSTANTIATE_TEST_CASE_P(
    PushSincResamplerTest,
    PushSincResamplerTest,
    testing::Values(
        // First run through the rates tested in SincResamplerTest. The
        // thresholds are identical.
        //
        // We don't test rates which fail to provide an integer number of
        // samples in a 10 ms block (22050 and 11025 Hz). WebRTC doesn't support
        // these rates in any case (for the same reason).

        // To 44.1kHz
        std::tr1::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
        std::tr1::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
        std::tr1::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
        std::tr1::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
        std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
        std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
        std::tr1::make_tuple(192000, 44100, -20.50, -13.31),

        // To 48kHz
        std::tr1::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
        std::tr1::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
        std::tr1::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
        std::tr1::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
        std::tr1::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
        std::tr1::make_tuple(192000, 48000, -20.43, -14.11),

        // To 96kHz
        std::tr1::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
        std::tr1::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
        std::tr1::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
        std::tr1::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
        std::tr1::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(192000, 96000, kResamplingRMSError, -28.41),

        // To 192kHz
        std::tr1::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
        std::tr1::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
        std::tr1::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
        std::tr1::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
        std::tr1::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
        std::tr1::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
        std::tr1::make_tuple(192000, 192000, kResamplingRMSError, -73.52),

        // Next run through some additional cases interesting for WebRTC.
        // We skip some extreme downsampled cases (192 -> {8, 16}, 96 -> 8)
        // because they violate |kHighFrequencyMaxError|, which is not
        // unexpected. It's very unlikely that we'll see these conversions in
        // practice anyway.

        // To 8 kHz
        std::tr1::make_tuple(8000, 8000, kResamplingRMSError, -75.50),
        std::tr1::make_tuple(16000, 8000, -18.56, -28.79),
        std::tr1::make_tuple(32000, 8000, -20.36, -14.13),
        std::tr1::make_tuple(44100, 8000, -21.00, -11.39),
        std::tr1::make_tuple(48000, 8000, -20.96, -11.04),

        // To 16 kHz
        std::tr1::make_tuple(8000, 16000, kResamplingRMSError, -70.30),
        std::tr1::make_tuple(16000, 16000, kResamplingRMSError, -75.51),
        std::tr1::make_tuple(32000, 16000, -18.48, -28.59),
        std::tr1::make_tuple(44100, 16000, -19.30, -19.67),
        std::tr1::make_tuple(48000, 16000, -19.81, -18.11),
        std::tr1::make_tuple(96000, 16000, -20.95, -10.96),

        // To 32 kHz
        std::tr1::make_tuple(8000, 32000, kResamplingRMSError, -70.30),
        std::tr1::make_tuple(16000, 32000, kResamplingRMSError, -75.51),
        std::tr1::make_tuple(32000, 32000, kResamplingRMSError, -75.51),
        std::tr1::make_tuple(44100, 32000, -16.44, -51.10),
        std::tr1::make_tuple(48000, 32000, -16.90, -44.03),
        std::tr1::make_tuple(96000, 32000, -19.61, -18.04),
        std::tr1::make_tuple(192000, 32000, -21.02, -10.94)));

}  // namespace webrtc