// BugReporterVisitors.cpp - Helpers for reporting bugs -----------*- C++ -*--// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a set of BugReporter "visitors" which can be used to // enhance the diagnostics reported for a bug. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitor.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprObjC.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/StaticAnalyzer/Core/BugReporter/PathDiagnostic.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace ento; using llvm::FoldingSetNodeID; //===----------------------------------------------------------------------===// // Utility functions. //===----------------------------------------------------------------------===// bool bugreporter::isDeclRefExprToReference(const Expr *E) { if (const DeclRefExpr *DRE = dyn_cast(E)) { return DRE->getDecl()->getType()->isReferenceType(); } return false; } const Expr *bugreporter::getDerefExpr(const Stmt *S) { // Pattern match for a few useful cases (do something smarter later): // a[0], p->f, *p const Expr *E = dyn_cast(S); if (!E) return 0; E = E->IgnoreParenCasts(); while (true) { if (const BinaryOperator *B = dyn_cast(E)) { assert(B->isAssignmentOp()); E = B->getLHS()->IgnoreParenCasts(); continue; } else if (const UnaryOperator *U = dyn_cast(E)) { if (U->getOpcode() == UO_Deref) return U->getSubExpr()->IgnoreParenCasts(); } else if (const MemberExpr *ME = dyn_cast(E)) { if (ME->isArrow() || isDeclRefExprToReference(ME->getBase())) { return ME->getBase()->IgnoreParenCasts(); } } else if (const ObjCIvarRefExpr *IvarRef = dyn_cast(E)) { return IvarRef->getBase()->IgnoreParenCasts(); } else if (const ArraySubscriptExpr *AE = dyn_cast(E)) { return AE->getBase(); } break; } return NULL; } const Stmt *bugreporter::GetDenomExpr(const ExplodedNode *N) { const Stmt *S = N->getLocationAs()->getStmt(); if (const BinaryOperator *BE = dyn_cast(S)) return BE->getRHS(); return NULL; } const Stmt *bugreporter::GetRetValExpr(const ExplodedNode *N) { const Stmt *S = N->getLocationAs()->getStmt(); if (const ReturnStmt *RS = dyn_cast(S)) return RS->getRetValue(); return NULL; } //===----------------------------------------------------------------------===// // Definitions for bug reporter visitors. //===----------------------------------------------------------------------===// PathDiagnosticPiece* BugReporterVisitor::getEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { return 0; } PathDiagnosticPiece* BugReporterVisitor::getDefaultEndPath(BugReporterContext &BRC, const ExplodedNode *EndPathNode, BugReport &BR) { PathDiagnosticLocation L = PathDiagnosticLocation::createEndOfPath(EndPathNode,BRC.getSourceManager()); BugReport::ranges_iterator Beg, End; llvm::tie(Beg, End) = BR.getRanges(); // Only add the statement itself as a range if we didn't specify any // special ranges for this report. PathDiagnosticPiece *P = new PathDiagnosticEventPiece(L, BR.getDescription(), Beg == End); for (; Beg != End; ++Beg) P->addRange(*Beg); return P; } namespace { /// Emits an extra note at the return statement of an interesting stack frame. /// /// The returned value is marked as an interesting value, and if it's null, /// adds a visitor to track where it became null. /// /// This visitor is intended to be used when another visitor discovers that an /// interesting value comes from an inlined function call. class ReturnVisitor : public BugReporterVisitorImpl { const StackFrameContext *StackFrame; enum { Initial, MaybeUnsuppress, Satisfied } Mode; bool InitiallySuppressed; public: ReturnVisitor(const StackFrameContext *Frame, bool Suppressed) : StackFrame(Frame), Mode(Initial), InitiallySuppressed(Suppressed) {} static void *getTag() { static int Tag = 0; return static_cast(&Tag); } virtual void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddPointer(ReturnVisitor::getTag()); ID.AddPointer(StackFrame); ID.AddBoolean(InitiallySuppressed); } /// Adds a ReturnVisitor if the given statement represents a call that was /// inlined. /// /// This will search back through the ExplodedGraph, starting from the given /// node, looking for when the given statement was processed. If it turns out /// the statement is a call that was inlined, we add the visitor to the /// bug report, so it can print a note later. static void addVisitorIfNecessary(const ExplodedNode *Node, const Stmt *S, BugReport &BR) { if (!CallEvent::isCallStmt(S)) return; // First, find when we processed the statement. do { if (Optional CEE = Node->getLocationAs()) if (CEE->getCalleeContext()->getCallSite() == S) break; if (Optional SP = Node->getLocationAs()) if (SP->getStmt() == S) break; Node = Node->getFirstPred(); } while (Node); // Next, step over any post-statement checks. while (Node && Node->getLocation().getAs()) Node = Node->getFirstPred(); if (!Node) return; // Finally, see if we inlined the call. Optional CEE = Node->getLocationAs(); if (!CEE) return; const StackFrameContext *CalleeContext = CEE->getCalleeContext(); if (CalleeContext->getCallSite() != S) return; // Check the return value. ProgramStateRef State = Node->getState(); SVal RetVal = State->getSVal(S, Node->getLocationContext()); // Handle cases where a reference is returned and then immediately used. if (cast(S)->isGLValue()) if (Optional LValue = RetVal.getAs()) RetVal = State->getSVal(*LValue); // See if the return value is NULL. If so, suppress the report. SubEngine *Eng = State->getStateManager().getOwningEngine(); assert(Eng && "Cannot file a bug report without an owning engine"); AnalyzerOptions &Options = Eng->getAnalysisManager().options; bool InitiallySuppressed = false; if (Options.shouldSuppressNullReturnPaths()) if (Optional RetLoc = RetVal.getAs()) InitiallySuppressed = !State->assume(*RetLoc, true); BR.markInteresting(CalleeContext); BR.addVisitor(new ReturnVisitor(CalleeContext, InitiallySuppressed)); } /// Returns true if any counter-suppression heuristics are enabled for /// ReturnVisitor. static bool hasCounterSuppression(AnalyzerOptions &Options) { return Options.shouldAvoidSuppressingNullArgumentPaths(); } PathDiagnosticPiece *visitNodeInitial(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { // Only print a message at the interesting return statement. if (N->getLocationContext() != StackFrame) return 0; Optional SP = N->getLocationAs(); if (!SP) return 0; const ReturnStmt *Ret = dyn_cast(SP->getStmt()); if (!Ret) return 0; // Okay, we're at the right return statement, but do we have the return // value available? ProgramStateRef State = N->getState(); SVal V = State->getSVal(Ret, StackFrame); if (V.isUnknownOrUndef()) return 0; // Don't print any more notes after this one. Mode = Satisfied; const Expr *RetE = Ret->getRetValue(); assert(RetE && "Tracking a return value for a void function"); // Handle cases where a reference is returned and then immediately used. Optional LValue; if (RetE->isGLValue()) { if ((LValue = V.getAs())) { SVal RValue = State->getRawSVal(*LValue, RetE->getType()); if (RValue.getAs()) V = RValue; } } // Ignore aggregate rvalues. if (V.getAs() || V.getAs()) return 0; RetE = RetE->IgnoreParenCasts(); // If we can't prove the return value is 0, just mark it interesting, and // make sure to track it into any further inner functions. if (State->assume(V.castAs(), true)) { BR.markInteresting(V); ReturnVisitor::addVisitorIfNecessary(N, RetE, BR); return 0; } // If we're returning 0, we should track where that 0 came from. bugreporter::trackNullOrUndefValue(N, RetE, BR); // Build an appropriate message based on the return value. SmallString<64> Msg; llvm::raw_svector_ostream Out(Msg); if (V.getAs()) { // If we have counter-suppression enabled, make sure we keep visiting // future nodes. We want to emit a path note as well, in case // the report is resurrected as valid later on. ExprEngine &Eng = BRC.getBugReporter().getEngine(); AnalyzerOptions &Options = Eng.getAnalysisManager().options; if (InitiallySuppressed && hasCounterSuppression(Options)) Mode = MaybeUnsuppress; if (RetE->getType()->isObjCObjectPointerType()) Out << "Returning nil"; else Out << "Returning null pointer"; } else { Out << "Returning zero"; } if (LValue) { if (const MemRegion *MR = LValue->getAsRegion()) { if (MR->canPrintPretty()) { Out << " (reference to '"; MR->printPretty(Out); Out << "')"; } } } else { // FIXME: We should have a more generalized location printing mechanism. if (const DeclRefExpr *DR = dyn_cast(RetE)) if (const DeclaratorDecl *DD = dyn_cast(DR->getDecl())) Out << " (loaded from '" << *DD << "')"; } PathDiagnosticLocation L(Ret, BRC.getSourceManager(), StackFrame); return new PathDiagnosticEventPiece(L, Out.str()); } PathDiagnosticPiece *visitNodeMaybeUnsuppress(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { #ifndef NDEBUG ExprEngine &Eng = BRC.getBugReporter().getEngine(); AnalyzerOptions &Options = Eng.getAnalysisManager().options; assert(hasCounterSuppression(Options)); #endif // Are we at the entry node for this call? Optional CE = N->getLocationAs(); if (!CE) return 0; if (CE->getCalleeContext() != StackFrame) return 0; Mode = Satisfied; // Don't automatically suppress a report if one of the arguments is // known to be a null pointer. Instead, start tracking /that/ null // value back to its origin. ProgramStateManager &StateMgr = BRC.getStateManager(); CallEventManager &CallMgr = StateMgr.getCallEventManager(); ProgramStateRef State = N->getState(); CallEventRef<> Call = CallMgr.getCaller(StackFrame, State); for (unsigned I = 0, E = Call->getNumArgs(); I != E; ++I) { Optional ArgV = Call->getArgSVal(I).getAs(); if (!ArgV) continue; const Expr *ArgE = Call->getArgExpr(I); if (!ArgE) continue; // Is it possible for this argument to be non-null? if (State->assume(*ArgV, true)) continue; if (bugreporter::trackNullOrUndefValue(N, ArgE, BR, /*IsArg=*/true)) BR.removeInvalidation(ReturnVisitor::getTag(), StackFrame); // If we /can't/ track the null pointer, we should err on the side of // false negatives, and continue towards marking this report invalid. // (We will still look at the other arguments, though.) } return 0; } PathDiagnosticPiece *VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { switch (Mode) { case Initial: return visitNodeInitial(N, PrevN, BRC, BR); case MaybeUnsuppress: return visitNodeMaybeUnsuppress(N, PrevN, BRC, BR); case Satisfied: return 0; } llvm_unreachable("Invalid visit mode!"); } PathDiagnosticPiece *getEndPath(BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) { if (InitiallySuppressed) BR.markInvalid(ReturnVisitor::getTag(), StackFrame); return 0; } }; } // end anonymous namespace void FindLastStoreBRVisitor ::Profile(llvm::FoldingSetNodeID &ID) const { static int tag = 0; ID.AddPointer(&tag); ID.AddPointer(R); ID.Add(V); } PathDiagnosticPiece *FindLastStoreBRVisitor::VisitNode(const ExplodedNode *Succ, const ExplodedNode *Pred, BugReporterContext &BRC, BugReport &BR) { if (Satisfied) return NULL; const ExplodedNode *StoreSite = 0; const Expr *InitE = 0; bool IsParam = false; // First see if we reached the declaration of the region. if (const VarRegion *VR = dyn_cast(R)) { if (Optional P = Pred->getLocationAs()) { if (const DeclStmt *DS = P->getStmtAs()) { if (DS->getSingleDecl() == VR->getDecl()) { StoreSite = Pred; InitE = VR->getDecl()->getInit(); } } } } // Otherwise, see if this is the store site: // (1) Succ has this binding and Pred does not, i.e. this is // where the binding first occurred. // (2) Succ has this binding and is a PostStore node for this region, i.e. // the same binding was re-assigned here. if (!StoreSite) { if (Succ->getState()->getSVal(R) != V) return NULL; if (Pred->getState()->getSVal(R) == V) { Optional PS = Succ->getLocationAs(); if (!PS || PS->getLocationValue() != R) return NULL; } StoreSite = Succ; // If this is an assignment expression, we can track the value // being assigned. if (Optional P = Succ->getLocationAs()) if (const BinaryOperator *BO = P->getStmtAs()) if (BO->isAssignmentOp()) InitE = BO->getRHS(); // If this is a call entry, the variable should be a parameter. // FIXME: Handle CXXThisRegion as well. (This is not a priority because // 'this' should never be NULL, but this visitor isn't just for NULL and // UndefinedVal.) if (Optional CE = Succ->getLocationAs()) { if (const VarRegion *VR = dyn_cast(R)) { const ParmVarDecl *Param = cast(VR->getDecl()); ProgramStateManager &StateMgr = BRC.getStateManager(); CallEventManager &CallMgr = StateMgr.getCallEventManager(); CallEventRef<> Call = CallMgr.getCaller(CE->getCalleeContext(), Succ->getState()); InitE = Call->getArgExpr(Param->getFunctionScopeIndex()); IsParam = true; } } // If this is a CXXTempObjectRegion, the Expr responsible for its creation // is wrapped inside of it. if (const CXXTempObjectRegion *TmpR = dyn_cast(R)) InitE = TmpR->getExpr(); } if (!StoreSite) return NULL; Satisfied = true; // If we have an expression that provided the value, try to track where it // came from. if (InitE) { if (V.isUndef() || V.getAs()) { if (!IsParam) InitE = InitE->IgnoreParenCasts(); bugreporter::trackNullOrUndefValue(StoreSite, InitE, BR, IsParam); } else { ReturnVisitor::addVisitorIfNecessary(StoreSite, InitE->IgnoreParenCasts(), BR); } } if (!R->canPrintPretty()) return 0; // Okay, we've found the binding. Emit an appropriate message. SmallString<256> sbuf; llvm::raw_svector_ostream os(sbuf); if (Optional PS = StoreSite->getLocationAs()) { const Stmt *S = PS->getStmt(); const char *action = 0; const DeclStmt *DS = dyn_cast(S); const VarRegion *VR = dyn_cast(R); if (DS) { action = "initialized to "; } else if (isa(S)) { action = "captured by block as "; if (VR) { // See if we can get the BlockVarRegion. ProgramStateRef State = StoreSite->getState(); SVal V = State->getSVal(S, PS->getLocationContext()); if (const BlockDataRegion *BDR = dyn_cast_or_null(V.getAsRegion())) { if (const VarRegion *OriginalR = BDR->getOriginalRegion(VR)) { if (Optional KV = State->getSVal(OriginalR).getAs()) BR.addVisitor(new FindLastStoreBRVisitor(*KV, OriginalR)); } } } } if (action) { if (!R) return 0; os << '\''; R->printPretty(os); os << "' "; if (V.getAs()) { bool b = false; if (R->isBoundable()) { if (const TypedValueRegion *TR = dyn_cast(R)) { if (TR->getValueType()->isObjCObjectPointerType()) { os << action << "nil"; b = true; } } } if (!b) os << action << "a null pointer value"; } else if (Optional CVal = V.getAs()) { os << action << CVal->getValue(); } else if (DS) { if (V.isUndef()) { if (isa(R)) { const VarDecl *VD = cast(DS->getSingleDecl()); if (VD->getInit()) os << "initialized to a garbage value"; else os << "declared without an initial value"; } } else { os << "initialized here"; } } } } else if (StoreSite->getLocation().getAs()) { if (const VarRegion *VR = dyn_cast(R)) { const ParmVarDecl *Param = cast(VR->getDecl()); os << "Passing "; if (V.getAs()) { if (Param->getType()->isObjCObjectPointerType()) os << "nil object reference"; else os << "null pointer value"; } else if (V.isUndef()) { os << "uninitialized value"; } else if (Optional CI = V.getAs()) { os << "the value " << CI->getValue(); } else { os << "value"; } // Printed parameter indexes are 1-based, not 0-based. unsigned Idx = Param->getFunctionScopeIndex() + 1; os << " via " << Idx << llvm::getOrdinalSuffix(Idx) << " parameter '"; R->printPretty(os); os << '\''; } } if (os.str().empty()) { if (V.getAs()) { bool b = false; if (R->isBoundable()) { if (const TypedValueRegion *TR = dyn_cast(R)) { if (TR->getValueType()->isObjCObjectPointerType()) { os << "nil object reference stored to "; b = true; } } } if (!b) os << "Null pointer value stored to "; } else if (V.isUndef()) { os << "Uninitialized value stored to "; } else if (Optional CV = V.getAs()) { os << "The value " << CV->getValue() << " is assigned to "; } else os << "Value assigned to "; os << '\''; R->printPretty(os); os << '\''; } // Construct a new PathDiagnosticPiece. ProgramPoint P = StoreSite->getLocation(); PathDiagnosticLocation L; if (P.getAs() && InitE) L = PathDiagnosticLocation(InitE, BRC.getSourceManager(), P.getLocationContext()); else L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); if (!L.isValid()) return NULL; return new PathDiagnosticEventPiece(L, os.str()); } void TrackConstraintBRVisitor::Profile(llvm::FoldingSetNodeID &ID) const { static int tag = 0; ID.AddPointer(&tag); ID.AddBoolean(Assumption); ID.Add(Constraint); } /// Return the tag associated with this visitor. This tag will be used /// to make all PathDiagnosticPieces created by this visitor. const char *TrackConstraintBRVisitor::getTag() { return "TrackConstraintBRVisitor"; } PathDiagnosticPiece * TrackConstraintBRVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { if (isSatisfied) return NULL; // Check if in the previous state it was feasible for this constraint // to *not* be true. if (PrevN->getState()->assume(Constraint, !Assumption)) { isSatisfied = true; // As a sanity check, make sure that the negation of the constraint // was infeasible in the current state. If it is feasible, we somehow // missed the transition point. if (N->getState()->assume(Constraint, !Assumption)) return NULL; // We found the transition point for the constraint. We now need to // pretty-print the constraint. (work-in-progress) std::string sbuf; llvm::raw_string_ostream os(sbuf); if (Constraint.getAs()) { os << "Assuming pointer value is "; os << (Assumption ? "non-null" : "null"); } if (os.str().empty()) return NULL; // Construct a new PathDiagnosticPiece. ProgramPoint P = N->getLocation(); PathDiagnosticLocation L = PathDiagnosticLocation::create(P, BRC.getSourceManager()); if (!L.isValid()) return NULL; PathDiagnosticEventPiece *X = new PathDiagnosticEventPiece(L, os.str()); X->setTag(getTag()); return X; } return NULL; } SuppressInlineDefensiveChecksVisitor:: SuppressInlineDefensiveChecksVisitor(DefinedSVal Value, const ExplodedNode *N) : V(Value), IsSatisfied(false), IsTrackingTurnedOn(false) { // Check if the visitor is disabled. SubEngine *Eng = N->getState()->getStateManager().getOwningEngine(); assert(Eng && "Cannot file a bug report without an owning engine"); AnalyzerOptions &Options = Eng->getAnalysisManager().options; if (!Options.shouldSuppressInlinedDefensiveChecks()) IsSatisfied = true; assert(N->getState()->isNull(V).isConstrainedTrue() && "The visitor only tracks the cases where V is constrained to 0"); } void SuppressInlineDefensiveChecksVisitor::Profile(FoldingSetNodeID &ID) const { static int id = 0; ID.AddPointer(&id); ID.Add(V); } const char *SuppressInlineDefensiveChecksVisitor::getTag() { return "IDCVisitor"; } PathDiagnosticPiece * SuppressInlineDefensiveChecksVisitor::VisitNode(const ExplodedNode *Succ, const ExplodedNode *Pred, BugReporterContext &BRC, BugReport &BR) { if (IsSatisfied) return 0; // Start tracking after we see the first state in which the value is null. if (!IsTrackingTurnedOn) if (Succ->getState()->isNull(V).isConstrainedTrue()) IsTrackingTurnedOn = true; if (!IsTrackingTurnedOn) return 0; // Check if in the previous state it was feasible for this value // to *not* be null. if (!Pred->getState()->isNull(V).isConstrainedTrue()) { IsSatisfied = true; assert(Succ->getState()->isNull(V).isConstrainedTrue()); // Check if this is inlined defensive checks. const LocationContext *CurLC =Succ->getLocationContext(); const LocationContext *ReportLC = BR.getErrorNode()->getLocationContext(); if (CurLC != ReportLC && !CurLC->isParentOf(ReportLC)) BR.markInvalid("Suppress IDC", CurLC); } return 0; } static const MemRegion *getLocationRegionIfReference(const Expr *E, const ExplodedNode *N) { if (const DeclRefExpr *DR = dyn_cast(E)) { if (const VarDecl *VD = dyn_cast(DR->getDecl())) { if (!VD->getType()->isReferenceType()) return 0; ProgramStateManager &StateMgr = N->getState()->getStateManager(); MemRegionManager &MRMgr = StateMgr.getRegionManager(); return MRMgr.getVarRegion(VD, N->getLocationContext()); } } // FIXME: This does not handle other kinds of null references, // for example, references from FieldRegions: // struct Wrapper { int &ref; }; // Wrapper w = { *(int *)0 }; // w.ref = 1; return 0; } bool bugreporter::trackNullOrUndefValue(const ExplodedNode *N, const Stmt *S, BugReport &report, bool IsArg) { if (!S || !N) return false; if (const ExprWithCleanups *EWC = dyn_cast(S)) S = EWC->getSubExpr(); if (const OpaqueValueExpr *OVE = dyn_cast(S)) S = OVE->getSourceExpr(); // Peel off the ternary operator. if (const ConditionalOperator *CO = dyn_cast(S)) { ProgramStateRef State = N->getState(); SVal CondVal = State->getSVal(CO->getCond(), N->getLocationContext()); if (State->isNull(CondVal).isConstrainedTrue()) { S = CO->getTrueExpr(); } else { assert(State->isNull(CondVal).isConstrainedFalse()); S = CO->getFalseExpr(); } } const Expr *Inner = 0; if (const Expr *Ex = dyn_cast(S)) { Ex = Ex->IgnoreParenCasts(); if (ExplodedGraph::isInterestingLValueExpr(Ex) || CallEvent::isCallStmt(Ex)) Inner = Ex; } if (IsArg) { assert(N->getLocation().getAs() && "Tracking arg but not at call"); } else { // Walk through nodes until we get one that matches the statement exactly. // Alternately, if we hit a known lvalue for the statement, we know we've // gone too far (though we can likely track the lvalue better anyway). do { const ProgramPoint &pp = N->getLocation(); if (Optional ps = pp.getAs()) { if (ps->getStmt() == S || ps->getStmt() == Inner) break; } else if (Optional CEE = pp.getAs()) { if (CEE->getCalleeContext()->getCallSite() == S || CEE->getCalleeContext()->getCallSite() == Inner) break; } N = N->getFirstPred(); } while (N); if (!N) return false; } ProgramStateRef state = N->getState(); // See if the expression we're interested refers to a variable. // If so, we can track both its contents and constraints on its value. if (Inner && ExplodedGraph::isInterestingLValueExpr(Inner)) { const MemRegion *R = 0; // Find the ExplodedNode where the lvalue (the value of 'Ex') // was computed. We need this for getting the location value. const ExplodedNode *LVNode = N; while (LVNode) { if (Optional P = LVNode->getLocation().getAs()) { if (P->getStmt() == Inner) break; } LVNode = LVNode->getFirstPred(); } assert(LVNode && "Unable to find the lvalue node."); ProgramStateRef LVState = LVNode->getState(); SVal LVal = LVState->getSVal(Inner, LVNode->getLocationContext()); if (LVState->isNull(LVal).isConstrainedTrue()) { // In case of C++ references, we want to differentiate between a null // reference and reference to null pointer. // If the LVal is null, check if we are dealing with null reference. // For those, we want to track the location of the reference. if (const MemRegion *RR = getLocationRegionIfReference(Inner, N)) R = RR; } else { R = LVState->getSVal(Inner, LVNode->getLocationContext()).getAsRegion(); // If this is a C++ reference to a null pointer, we are tracking the // pointer. In additon, we should find the store at which the reference // got initialized. if (const MemRegion *RR = getLocationRegionIfReference(Inner, N)) { if (Optional KV = LVal.getAs()) report.addVisitor(new FindLastStoreBRVisitor(*KV, RR)); } } if (R) { // Mark both the variable region and its contents as interesting. SVal V = state->getRawSVal(loc::MemRegionVal(R)); // If the value matches the default for the variable region, that // might mean that it's been cleared out of the state. Fall back to // the full argument expression (with casts and such intact). if (IsArg) { bool UseArgValue = V.isUnknownOrUndef() || V.isZeroConstant(); if (!UseArgValue) { const SymbolRegionValue *SRV = dyn_cast_or_null(V.getAsLocSymbol()); if (SRV) UseArgValue = (SRV->getRegion() == R); } if (UseArgValue) V = state->getSValAsScalarOrLoc(S, N->getLocationContext()); } report.markInteresting(R); report.markInteresting(V); report.addVisitor(new UndefOrNullArgVisitor(R)); if (isa(R)) { TrackConstraintBRVisitor *VI = new TrackConstraintBRVisitor(loc::MemRegionVal(R), false); report.addVisitor(VI); } // If the contents are symbolic, find out when they became null. if (V.getAsLocSymbol()) { BugReporterVisitor *ConstraintTracker = new TrackConstraintBRVisitor(V.castAs(), false); report.addVisitor(ConstraintTracker); // Add visitor, which will suppress inline defensive checks. if (N->getState()->isNull(V).isConstrainedTrue()) { BugReporterVisitor *IDCSuppressor = new SuppressInlineDefensiveChecksVisitor(V.castAs(), N); report.addVisitor(IDCSuppressor); } } if (Optional KV = V.getAs()) report.addVisitor(new FindLastStoreBRVisitor(*KV, R)); return true; } } // If the expression is not an "lvalue expression", we can still // track the constraints on its contents. SVal V = state->getSValAsScalarOrLoc(S, N->getLocationContext()); // If the value came from an inlined function call, we should at least make // sure that function isn't pruned in our output. if (const Expr *E = dyn_cast(S)) S = E->IgnoreParenCasts(); ReturnVisitor::addVisitorIfNecessary(N, S, report); // Uncomment this to find cases where we aren't properly getting the // base value that was dereferenced. // assert(!V.isUnknownOrUndef()); // Is it a symbolic value? if (Optional L = V.getAs()) { // At this point we are dealing with the region's LValue. // However, if the rvalue is a symbolic region, we should track it as well. SVal RVal = state->getSVal(L->getRegion()); const MemRegion *RegionRVal = RVal.getAsRegion(); report.addVisitor(new UndefOrNullArgVisitor(L->getRegion())); if (RegionRVal && isa(RegionRVal)) { report.markInteresting(RegionRVal); report.addVisitor(new TrackConstraintBRVisitor( loc::MemRegionVal(RegionRVal), false)); } } return true; } BugReporterVisitor * FindLastStoreBRVisitor::createVisitorObject(const ExplodedNode *N, const MemRegion *R) { assert(R && "The memory region is null."); ProgramStateRef state = N->getState(); if (Optional KV = state->getSVal(R).getAs()) return new FindLastStoreBRVisitor(*KV, R); return 0; } PathDiagnosticPiece *NilReceiverBRVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { Optional P = N->getLocationAs(); if (!P) return 0; const ObjCMessageExpr *ME = P->getStmtAs(); if (!ME) return 0; const Expr *Receiver = ME->getInstanceReceiver(); if (!Receiver) return 0; ProgramStateRef state = N->getState(); const SVal &V = state->getSVal(Receiver, N->getLocationContext()); Optional DV = V.getAs(); if (!DV) return 0; state = state->assume(*DV, true); if (state) return 0; // The receiver was nil, and hence the method was skipped. // Register a BugReporterVisitor to issue a message telling us how // the receiver was null. bugreporter::trackNullOrUndefValue(N, Receiver, BR); // Issue a message saying that the method was skipped. PathDiagnosticLocation L(Receiver, BRC.getSourceManager(), N->getLocationContext()); return new PathDiagnosticEventPiece(L, "No method is called " "because the receiver is nil"); } // Registers every VarDecl inside a Stmt with a last store visitor. void FindLastStoreBRVisitor::registerStatementVarDecls(BugReport &BR, const Stmt *S) { const ExplodedNode *N = BR.getErrorNode(); std::deque WorkList; WorkList.push_back(S); while (!WorkList.empty()) { const Stmt *Head = WorkList.front(); WorkList.pop_front(); ProgramStateRef state = N->getState(); ProgramStateManager &StateMgr = state->getStateManager(); if (const DeclRefExpr *DR = dyn_cast(Head)) { if (const VarDecl *VD = dyn_cast(DR->getDecl())) { const VarRegion *R = StateMgr.getRegionManager().getVarRegion(VD, N->getLocationContext()); // What did we load? SVal V = state->getSVal(S, N->getLocationContext()); if (V.getAs() || V.getAs()) { // Register a new visitor with the BugReport. BR.addVisitor(new FindLastStoreBRVisitor(V.castAs(), R)); } } } for (Stmt::const_child_iterator I = Head->child_begin(); I != Head->child_end(); ++I) WorkList.push_back(*I); } } //===----------------------------------------------------------------------===// // Visitor that tries to report interesting diagnostics from conditions. //===----------------------------------------------------------------------===// /// Return the tag associated with this visitor. This tag will be used /// to make all PathDiagnosticPieces created by this visitor. const char *ConditionBRVisitor::getTag() { return "ConditionBRVisitor"; } PathDiagnosticPiece *ConditionBRVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *Prev, BugReporterContext &BRC, BugReport &BR) { PathDiagnosticPiece *piece = VisitNodeImpl(N, Prev, BRC, BR); if (piece) { piece->setTag(getTag()); if (PathDiagnosticEventPiece *ev=dyn_cast(piece)) ev->setPrunable(true, /* override */ false); } return piece; } PathDiagnosticPiece *ConditionBRVisitor::VisitNodeImpl(const ExplodedNode *N, const ExplodedNode *Prev, BugReporterContext &BRC, BugReport &BR) { ProgramPoint progPoint = N->getLocation(); ProgramStateRef CurrentState = N->getState(); ProgramStateRef PrevState = Prev->getState(); // Compare the GDMs of the state, because that is where constraints // are managed. Note that ensure that we only look at nodes that // were generated by the analyzer engine proper, not checkers. if (CurrentState->getGDM().getRoot() == PrevState->getGDM().getRoot()) return 0; // If an assumption was made on a branch, it should be caught // here by looking at the state transition. if (Optional BE = progPoint.getAs()) { const CFGBlock *srcBlk = BE->getSrc(); if (const Stmt *term = srcBlk->getTerminator()) return VisitTerminator(term, N, srcBlk, BE->getDst(), BR, BRC); return 0; } if (Optional PS = progPoint.getAs()) { // FIXME: Assuming that BugReporter is a GRBugReporter is a layering // violation. const std::pair &tags = cast(BRC.getBugReporter()). getEngine().geteagerlyAssumeBinOpBifurcationTags(); const ProgramPointTag *tag = PS->getTag(); if (tag == tags.first) return VisitTrueTest(cast(PS->getStmt()), true, BRC, BR, N); if (tag == tags.second) return VisitTrueTest(cast(PS->getStmt()), false, BRC, BR, N); return 0; } return 0; } PathDiagnosticPiece * ConditionBRVisitor::VisitTerminator(const Stmt *Term, const ExplodedNode *N, const CFGBlock *srcBlk, const CFGBlock *dstBlk, BugReport &R, BugReporterContext &BRC) { const Expr *Cond = 0; switch (Term->getStmtClass()) { default: return 0; case Stmt::IfStmtClass: Cond = cast(Term)->getCond(); break; case Stmt::ConditionalOperatorClass: Cond = cast(Term)->getCond(); break; } assert(Cond); assert(srcBlk->succ_size() == 2); const bool tookTrue = *(srcBlk->succ_begin()) == dstBlk; return VisitTrueTest(Cond, tookTrue, BRC, R, N); } PathDiagnosticPiece * ConditionBRVisitor::VisitTrueTest(const Expr *Cond, bool tookTrue, BugReporterContext &BRC, BugReport &R, const ExplodedNode *N) { const Expr *Ex = Cond; while (true) { Ex = Ex->IgnoreParenCasts(); switch (Ex->getStmtClass()) { default: return 0; case Stmt::BinaryOperatorClass: return VisitTrueTest(Cond, cast(Ex), tookTrue, BRC, R, N); case Stmt::DeclRefExprClass: return VisitTrueTest(Cond, cast(Ex), tookTrue, BRC, R, N); case Stmt::UnaryOperatorClass: { const UnaryOperator *UO = cast(Ex); if (UO->getOpcode() == UO_LNot) { tookTrue = !tookTrue; Ex = UO->getSubExpr(); continue; } return 0; } } } } bool ConditionBRVisitor::patternMatch(const Expr *Ex, raw_ostream &Out, BugReporterContext &BRC, BugReport &report, const ExplodedNode *N, Optional &prunable) { const Expr *OriginalExpr = Ex; Ex = Ex->IgnoreParenCasts(); if (const DeclRefExpr *DR = dyn_cast(Ex)) { const bool quotes = isa(DR->getDecl()); if (quotes) { Out << '\''; const LocationContext *LCtx = N->getLocationContext(); const ProgramState *state = N->getState().getPtr(); if (const MemRegion *R = state->getLValue(cast(DR->getDecl()), LCtx).getAsRegion()) { if (report.isInteresting(R)) prunable = false; else { const ProgramState *state = N->getState().getPtr(); SVal V = state->getSVal(R); if (report.isInteresting(V)) prunable = false; } } } Out << DR->getDecl()->getDeclName().getAsString(); if (quotes) Out << '\''; return quotes; } if (const IntegerLiteral *IL = dyn_cast(Ex)) { QualType OriginalTy = OriginalExpr->getType(); if (OriginalTy->isPointerType()) { if (IL->getValue() == 0) { Out << "null"; return false; } } else if (OriginalTy->isObjCObjectPointerType()) { if (IL->getValue() == 0) { Out << "nil"; return false; } } Out << IL->getValue(); return false; } return false; } PathDiagnosticPiece * ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const BinaryOperator *BExpr, const bool tookTrue, BugReporterContext &BRC, BugReport &R, const ExplodedNode *N) { bool shouldInvert = false; Optional shouldPrune; SmallString<128> LhsString, RhsString; { llvm::raw_svector_ostream OutLHS(LhsString), OutRHS(RhsString); const bool isVarLHS = patternMatch(BExpr->getLHS(), OutLHS, BRC, R, N, shouldPrune); const bool isVarRHS = patternMatch(BExpr->getRHS(), OutRHS, BRC, R, N, shouldPrune); shouldInvert = !isVarLHS && isVarRHS; } BinaryOperator::Opcode Op = BExpr->getOpcode(); if (BinaryOperator::isAssignmentOp(Op)) { // For assignment operators, all that we care about is that the LHS // evaluates to "true" or "false". return VisitConditionVariable(LhsString, BExpr->getLHS(), tookTrue, BRC, R, N); } // For non-assignment operations, we require that we can understand // both the LHS and RHS. if (LhsString.empty() || RhsString.empty()) return 0; // Should we invert the strings if the LHS is not a variable name? SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Assuming " << (shouldInvert ? RhsString : LhsString) << " is "; // Do we need to invert the opcode? if (shouldInvert) switch (Op) { default: break; case BO_LT: Op = BO_GT; break; case BO_GT: Op = BO_LT; break; case BO_LE: Op = BO_GE; break; case BO_GE: Op = BO_LE; break; } if (!tookTrue) switch (Op) { case BO_EQ: Op = BO_NE; break; case BO_NE: Op = BO_EQ; break; case BO_LT: Op = BO_GE; break; case BO_GT: Op = BO_LE; break; case BO_LE: Op = BO_GT; break; case BO_GE: Op = BO_LT; break; default: return 0; } switch (Op) { case BO_EQ: Out << "equal to "; break; case BO_NE: Out << "not equal to "; break; default: Out << BinaryOperator::getOpcodeStr(Op) << ' '; break; } Out << (shouldInvert ? LhsString : RhsString); const LocationContext *LCtx = N->getLocationContext(); PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); PathDiagnosticEventPiece *event = new PathDiagnosticEventPiece(Loc, Out.str()); if (shouldPrune.hasValue()) event->setPrunable(shouldPrune.getValue()); return event; } PathDiagnosticPiece * ConditionBRVisitor::VisitConditionVariable(StringRef LhsString, const Expr *CondVarExpr, const bool tookTrue, BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) { // FIXME: If there's already a constraint tracker for this variable, // we shouldn't emit anything here (c.f. the double note in // test/Analysis/inlining/path-notes.c) SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Assuming " << LhsString << " is "; QualType Ty = CondVarExpr->getType(); if (Ty->isPointerType()) Out << (tookTrue ? "not null" : "null"); else if (Ty->isObjCObjectPointerType()) Out << (tookTrue ? "not nil" : "nil"); else if (Ty->isBooleanType()) Out << (tookTrue ? "true" : "false"); else if (Ty->isIntegerType()) Out << (tookTrue ? "non-zero" : "zero"); else return 0; const LocationContext *LCtx = N->getLocationContext(); PathDiagnosticLocation Loc(CondVarExpr, BRC.getSourceManager(), LCtx); PathDiagnosticEventPiece *event = new PathDiagnosticEventPiece(Loc, Out.str()); if (const DeclRefExpr *DR = dyn_cast(CondVarExpr)) { if (const VarDecl *VD = dyn_cast(DR->getDecl())) { const ProgramState *state = N->getState().getPtr(); if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { if (report.isInteresting(R)) event->setPrunable(false); } } } return event; } PathDiagnosticPiece * ConditionBRVisitor::VisitTrueTest(const Expr *Cond, const DeclRefExpr *DR, const bool tookTrue, BugReporterContext &BRC, BugReport &report, const ExplodedNode *N) { const VarDecl *VD = dyn_cast(DR->getDecl()); if (!VD) return 0; SmallString<256> Buf; llvm::raw_svector_ostream Out(Buf); Out << "Assuming '"; VD->getDeclName().printName(Out); Out << "' is "; QualType VDTy = VD->getType(); if (VDTy->isPointerType()) Out << (tookTrue ? "non-null" : "null"); else if (VDTy->isObjCObjectPointerType()) Out << (tookTrue ? "non-nil" : "nil"); else if (VDTy->isScalarType()) Out << (tookTrue ? "not equal to 0" : "0"); else return 0; const LocationContext *LCtx = N->getLocationContext(); PathDiagnosticLocation Loc(Cond, BRC.getSourceManager(), LCtx); PathDiagnosticEventPiece *event = new PathDiagnosticEventPiece(Loc, Out.str()); const ProgramState *state = N->getState().getPtr(); if (const MemRegion *R = state->getLValue(VD, LCtx).getAsRegion()) { if (report.isInteresting(R)) event->setPrunable(false); else { SVal V = state->getSVal(R); if (report.isInteresting(V)) event->setPrunable(false); } } return event; } PathDiagnosticPiece * LikelyFalsePositiveSuppressionBRVisitor::getEndPath(BugReporterContext &BRC, const ExplodedNode *N, BugReport &BR) { const Stmt *S = BR.getStmt(); if (!S) return 0; // Here we suppress false positives coming from system macros. This list is // based on known issues. // Skip reports within the sys/queue.h macros as we do not have the ability to // reason about data structure shapes. SourceManager &SM = BRC.getSourceManager(); SourceLocation Loc = S->getLocStart(); while (Loc.isMacroID()) { if (SM.isInSystemMacro(Loc) && (SM.getFilename(SM.getSpellingLoc(Loc)).endswith("sys/queue.h"))) { BR.markInvalid(getTag(), 0); return 0; } Loc = SM.getSpellingLoc(Loc); } return 0; } PathDiagnosticPiece * UndefOrNullArgVisitor::VisitNode(const ExplodedNode *N, const ExplodedNode *PrevN, BugReporterContext &BRC, BugReport &BR) { ProgramStateRef State = N->getState(); ProgramPoint ProgLoc = N->getLocation(); // We are only interested in visiting CallEnter nodes. Optional CEnter = ProgLoc.getAs(); if (!CEnter) return 0; // Check if one of the arguments is the region the visitor is tracking. CallEventManager &CEMgr = BRC.getStateManager().getCallEventManager(); CallEventRef<> Call = CEMgr.getCaller(CEnter->getCalleeContext(), State); unsigned Idx = 0; for (CallEvent::param_iterator I = Call->param_begin(), E = Call->param_end(); I != E; ++I, ++Idx) { const MemRegion *ArgReg = Call->getArgSVal(Idx).getAsRegion(); // Are we tracking the argument or its subregion? if ( !ArgReg || (ArgReg != R && !R->isSubRegionOf(ArgReg->StripCasts()))) continue; // Check the function parameter type. const ParmVarDecl *ParamDecl = *I; assert(ParamDecl && "Formal parameter has no decl?"); QualType T = ParamDecl->getType(); if (!(T->isAnyPointerType() || T->isReferenceType())) { // Function can only change the value passed in by address. continue; } // If it is a const pointer value, the function does not intend to // change the value. if (T->getPointeeType().isConstQualified()) continue; // Mark the call site (LocationContext) as interesting if the value of the // argument is undefined or '0'/'NULL'. SVal BoundVal = State->getSVal(R); if (BoundVal.isUndef() || BoundVal.isZeroConstant()) { BR.markInteresting(CEnter->getCalleeContext()); return 0; } } return 0; }