aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/CodeGenTypes.cpp
blob: e0baf800fbf6a879666baed7ad3d98250829c450 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This is the code that handles AST -> LLVM type lowering.
//
//===----------------------------------------------------------------------===//

#include "CodeGenTypes.h"
#include "CGCall.h"
#include "CGCXXABI.h"
#include "CGRecordLayout.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/RecordLayout.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;

CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
                           const llvm::TargetData &TD, const ABIInfo &Info,
                           CGCXXABI &CXXABI, const CodeGenOptions &CGO)
  : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
    TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
}

CodeGenTypes::~CodeGenTypes() {
  for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
         I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
      I != E; ++I)
    delete I->second;

  for (llvm::FoldingSet<CGFunctionInfo>::iterator
       I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
    delete &*I++;
}

void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
                                     llvm::StructType *Ty,
                                     llvm::StringRef suffix) {
  llvm::SmallString<256> TypeName;
  llvm::raw_svector_ostream OS(TypeName);
  OS << RD->getKindName() << '.';
  
  // Name the codegen type after the typedef name
  // if there is no tag type name available
  if (RD->getIdentifier()) {
    // FIXME: We should not have to check for a null decl context here.
    // Right now we do it because the implicit Obj-C decls don't have one.
    if (RD->getDeclContext())
      OS << RD->getQualifiedNameAsString();
    else
      RD->printName(OS);
  } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
    // FIXME: We should not have to check for a null decl context here.
    // Right now we do it because the implicit Obj-C decls don't have one.
    if (TDD->getDeclContext())
      OS << TDD->getQualifiedNameAsString();
    else
      TDD->printName(OS);
  } else
    OS << "anon";

  if (!suffix.empty())
    OS << suffix;

  Ty->setName(OS.str());
}

/// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
/// ConvertType in that it is used to convert to the memory representation for
/// a type.  For example, the scalar representation for _Bool is i1, but the
/// memory representation is usually i8 or i32, depending on the target.
llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
  llvm::Type *R = ConvertType(T);

  // If this is a non-bool type, don't map it.
  if (!R->isIntegerTy(1))
    return R;

  // Otherwise, return an integer of the target-specified size.
  return llvm::IntegerType::get(getLLVMContext(),
                                (unsigned)Context.getTypeSize(T));

}

// Code to verify a given function type is complete, i.e. the return type
// and all of the argument types are complete.
const TagType *CodeGenTypes::VerifyFuncTypeComplete(const Type* T) {
  const FunctionType *FT = cast<FunctionType>(T);
  if (const TagType* TT = FT->getResultType()->getAs<TagType>())
    if (!TT->getDecl()->isDefinition())
      return TT;
  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
    for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
      if (const TagType *TT = FPT->getArgType(i)->getAs<TagType>())
        if (!TT->getDecl()->isDefinition())
          return TT;
  return 0;
}

/// UpdateCompletedType - When we find the full definition for a TagDecl,
/// replace the 'opaque' type we previously made for it if applicable.
void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
  // If this is an enum being completed, then we flush all non-struct types from
  // the cache.  This allows function types and other things that may be derived
  // from the enum to be recomputed.
  if (isa<EnumDecl>(TD)) {
    TypeCache.clear();
    return;
  }
  
  const RecordDecl *RD = cast<RecordDecl>(TD);
  if (!RD->isDependentType())
    ConvertRecordDeclType(RD);
}

static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
                                    const llvm::fltSemantics &format) {
  if (&format == &llvm::APFloat::IEEEsingle)
    return llvm::Type::getFloatTy(VMContext);
  if (&format == &llvm::APFloat::IEEEdouble)
    return llvm::Type::getDoubleTy(VMContext);
  if (&format == &llvm::APFloat::IEEEquad)
    return llvm::Type::getFP128Ty(VMContext);
  if (&format == &llvm::APFloat::PPCDoubleDouble)
    return llvm::Type::getPPC_FP128Ty(VMContext);
  if (&format == &llvm::APFloat::x87DoubleExtended)
    return llvm::Type::getX86_FP80Ty(VMContext);
  assert(0 && "Unknown float format!");
  return 0;
}

/// ConvertType - Convert the specified type to its LLVM form.
llvm::Type *CodeGenTypes::ConvertType(QualType T) {
  T = Context.getCanonicalType(T);

  const Type *Ty = T.getTypePtr();

  // RecordTypes are cached and processed specially.
  if (const RecordType *RT = dyn_cast<RecordType>(Ty))
    return ConvertRecordDeclType(RT->getDecl());
  
  // See if type is already cached.
  llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
  // If type is found in map then use it. Otherwise, convert type T.
  if (TCI != TypeCache.end())
    return TCI->second;

  // If we don't have it in the cache, convert it now.
  llvm::Type *ResultType = 0;
  switch (Ty->getTypeClass()) {
  case Type::Record: // Handled above.
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.def"
    llvm_unreachable("Non-canonical or dependent types aren't possible.");
    break;

  case Type::Builtin: {
    switch (cast<BuiltinType>(Ty)->getKind()) {
    case BuiltinType::Void:
    case BuiltinType::ObjCId:
    case BuiltinType::ObjCClass:
    case BuiltinType::ObjCSel:
      // LLVM void type can only be used as the result of a function call.  Just
      // map to the same as char.
      ResultType = llvm::Type::getInt8Ty(getLLVMContext());
      break;

    case BuiltinType::Bool:
      // Note that we always return bool as i1 for use as a scalar type.
      ResultType = llvm::Type::getInt1Ty(getLLVMContext());
      break;

    case BuiltinType::Char_S:
    case BuiltinType::Char_U:
    case BuiltinType::SChar:
    case BuiltinType::UChar:
    case BuiltinType::Short:
    case BuiltinType::UShort:
    case BuiltinType::Int:
    case BuiltinType::UInt:
    case BuiltinType::Long:
    case BuiltinType::ULong:
    case BuiltinType::LongLong:
    case BuiltinType::ULongLong:
    case BuiltinType::WChar_S:
    case BuiltinType::WChar_U:
    case BuiltinType::Char16:
    case BuiltinType::Char32:
      ResultType = llvm::IntegerType::get(getLLVMContext(),
                                 static_cast<unsigned>(Context.getTypeSize(T)));
      break;

    case BuiltinType::Float:
    case BuiltinType::Double:
    case BuiltinType::LongDouble:
      ResultType = getTypeForFormat(getLLVMContext(),
                                    Context.getFloatTypeSemantics(T));
      break;

    case BuiltinType::NullPtr:
      // Model std::nullptr_t as i8*
      ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
      break;
        
    case BuiltinType::UInt128:
    case BuiltinType::Int128:
      ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
      break;
    
    case BuiltinType::Overload:
    case BuiltinType::Dependent:
    case BuiltinType::BoundMember:
    case BuiltinType::UnknownAny:
      llvm_unreachable("Unexpected placeholder builtin type!");
      break;
    }
    break;
  }
  case Type::Complex: {
    const llvm::Type *EltTy =
      ConvertType(cast<ComplexType>(Ty)->getElementType());
    ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
    break;
  }
  case Type::LValueReference:
  case Type::RValueReference: {
    RecursionStatePointerRAII X(RecursionState);
    const ReferenceType *RTy = cast<ReferenceType>(Ty);
    QualType ETy = RTy->getPointeeType();
    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    unsigned AS = Context.getTargetAddressSpace(ETy);
    ResultType = llvm::PointerType::get(PointeeType, AS);
    break;
  }
  case Type::Pointer: {
    RecursionStatePointerRAII X(RecursionState);
    const PointerType *PTy = cast<PointerType>(Ty);
    QualType ETy = PTy->getPointeeType();
    llvm::Type *PointeeType = ConvertTypeForMem(ETy);
    if (PointeeType->isVoidTy())
      PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
    unsigned AS = Context.getTargetAddressSpace(ETy);
    ResultType = llvm::PointerType::get(PointeeType, AS);
    break;
  }

  case Type::VariableArray: {
    const VariableArrayType *A = cast<VariableArrayType>(Ty);
    assert(A->getIndexTypeCVRQualifiers() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    // VLAs resolve to the innermost element type; this matches
    // the return of alloca, and there isn't any obviously better choice.
    ResultType = ConvertTypeForMem(A->getElementType());
    break;
  }
  case Type::IncompleteArray: {
    const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
    assert(A->getIndexTypeCVRQualifiers() == 0 &&
           "FIXME: We only handle trivial array types so far!");
    // int X[] -> [0 x int]
    ResultType = llvm::ArrayType::get(ConvertTypeForMem(A->getElementType()),0);
    break;
  }
  case Type::ConstantArray: {
    const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
    const llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
    ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
    break;
  }
  case Type::ExtVector:
  case Type::Vector: {
    const VectorType *VT = cast<VectorType>(Ty);
    ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
                                       VT->getNumElements());
    break;
  }
  case Type::FunctionNoProto:
  case Type::FunctionProto: {
    // First, check whether we can build the full function type.  If the
    // function type depends on an incomplete type (e.g. a struct or enum), we
    // cannot lower the function type.
    if (VerifyFuncTypeComplete(Ty)) {
      // This function's type depends on an incomplete tag type.
      // Return a placeholder type.
      ResultType = llvm::StructType::get(getLLVMContext());
      break;
    }

    // The function type can be built; call the appropriate routines to
    // build it.
    const CGFunctionInfo *FI;
    bool isVariadic;
    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Ty)) {
      FI = &getFunctionInfo(
                   CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
      isVariadic = FPT->isVariadic();
    } else {
      const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(Ty);
      FI = &getFunctionInfo(
                CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
      isVariadic = true;
    }

    ResultType = GetFunctionType(*FI, isVariadic);
    break;
  }

  case Type::ObjCObject:
    ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
    break;

  case Type::ObjCInterface: {
    // Objective-C interfaces are always opaque (outside of the
    // runtime, which can do whatever it likes); we never refine
    // these.
    llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
    if (!T)
      T = llvm::StructType::createNamed(getLLVMContext(), "");
    ResultType = T;
    break;
  }

  case Type::ObjCObjectPointer: {
    RecursionStatePointerRAII X(RecursionState);
    // Protocol qualifications do not influence the LLVM type, we just return a
    // pointer to the underlying interface type. We don't need to worry about
    // recursive conversion.
    const llvm::Type *T =
      ConvertType(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
    ResultType = T->getPointerTo();
    break;
  }

   case Type::Enum: {
    const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
    if (ED->isDefinition() || ED->isFixed())
      return ConvertType(ED->getIntegerType());
    // Return a placeholder '{}' type.
    ResultType = llvm::StructType::get(getLLVMContext());
    break;
  }

  case Type::BlockPointer: {
    RecursionStatePointerRAII X(RecursionState);
    const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
    llvm::Type *PointeeType = ConvertTypeForMem(FTy);
    unsigned AS = Context.getTargetAddressSpace(FTy);
    ResultType = llvm::PointerType::get(PointeeType, AS);
    break;
  }

  case Type::MemberPointer: {
    ResultType = 
      getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
    break;
  }
  }
  
  assert(ResultType && "Didn't convert a type?");
  
  TypeCache[Ty] = ResultType;
  return ResultType;
}

/// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
  // TagDecl's are not necessarily unique, instead use the (clang)
  // type connected to the decl.
  const Type *Key = Context.getTagDeclType(RD).getTypePtr();

  llvm::StructType *&Entry = RecordDeclTypes[Key];

  // If we don't have a StructType at all yet, create the forward declaration.
  if (Entry == 0)
    Entry = llvm::StructType::createNamed(getLLVMContext(), 
                                          std::string(RD->getKindName()) + "." +
                                          RD->getQualifiedNameAsString());
  llvm::StructType *Ty = Entry;

  // If this is still a forward declaration, or the LLVM type is already
  // complete, there's nothing more to do.
  if (!RD->isDefinition() || !Ty->isOpaque())
    return Ty;
  
  // If we're recursively nested inside the conversion of a pointer inside the
  // struct, defer conversion.
  if (RecursionState == RS_StructPointer) {
    DeferredRecords.push_back(RD);
    return Ty;
  }

  // Okay, this is a definition of a type.  Compile the implementation now.
  RecursionStateTy SavedRecursionState = RecursionState;
  RecursionState = RS_Struct;

  // Force conversion of non-virtual base classes recursively.
  if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
    for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
         e = CRD->bases_end(); i != e; ++i) {
      if (!i->isVirtual()) {
        const CXXRecordDecl *Base =
          cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
        ConvertRecordDeclType(Base);
      }
    }
  }

  // Layout fields.
  CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
  CGRecordLayouts[Key] = Layout;

  
  // Restore our recursion state.  If we're done converting the outer-most
  // record, then convert any deferred structs as well.
  RecursionState = SavedRecursionState;
  if (RecursionState == RS_Normal)
    while (!DeferredRecords.empty())
      ConvertRecordDeclType(DeferredRecords.pop_back_val());

  return Ty;
}

/// getCGRecordLayout - Return record layout info for the given record decl.
const CGRecordLayout &
CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
  const Type *Key = Context.getTagDeclType(RD).getTypePtr();

  const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
  if (!Layout) {
    // Compute the type information.
    ConvertRecordDeclType(RD);

    // Now try again.
    Layout = CGRecordLayouts.lookup(Key);
  }

  assert(Layout && "Unable to find record layout information for type");
  return *Layout;
}

bool CodeGenTypes::isZeroInitializable(QualType T) {
  // No need to check for member pointers when not compiling C++.
  if (!Context.getLangOptions().CPlusPlus)
    return true;
  
  T = Context.getBaseElementType(T);
  
  // Records are non-zero-initializable if they contain any
  // non-zero-initializable subobjects.
  if (const RecordType *RT = T->getAs<RecordType>()) {
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
    return isZeroInitializable(RD);
  }

  // We have to ask the ABI about member pointers.
  if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
    return getCXXABI().isZeroInitializable(MPT);
  
  // Everything else is okay.
  return true;
}

bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
  return getCGRecordLayout(RD).isZeroInitializable();
}