aboutsummaryrefslogtreecommitdiff
path: root/src/x86/windows/init.c
blob: 2c7e3cdf1c4b8b75866166575198cd77b422273f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>

#include <cpuinfo.h>
#include <x86/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>

#include <Windows.h>

static inline uint32_t bit_mask(uint32_t bits) {
	return (UINT32_C(1) << bits) - UINT32_C(1);
}

static inline uint32_t low_index_from_kaffinity(KAFFINITY kaffinity) {
	#if defined(_M_X64) || defined(_M_AMD64)
		unsigned long index;
		_BitScanForward64(&index, (unsigned __int64) kaffinity);
		return (uint32_t) index;
	#elif defined(_M_IX86)
		unsigned long index;
		_BitScanForward(&index, (unsigned long) kaffinity);
		return (uint32_t) index;
	#else
		#error Platform-specific implementation required
	#endif
}

static void cpuinfo_x86_count_caches(
	uint32_t processors_count,
	const struct cpuinfo_processor* processors,
	const struct cpuinfo_x86_processor* x86_processor,
	uint32_t* l1i_count_ptr,
	uint32_t* l1d_count_ptr,
	uint32_t* l2_count_ptr,
	uint32_t* l3_count_ptr,
	uint32_t* l4_count_ptr)
{
	uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0;
	uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
	uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
	for (uint32_t i = 0; i < processors_count; i++) {
		const uint32_t apic_id = processors[i].apic_id;
		cpuinfo_log_debug("APID ID %"PRIu32": logical processor %"PRIu32, apic_id, i);

		if (x86_processor->cache.l1i.size != 0) {
			const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor->cache.l1i.apic_bits);
			if (l1i_id != last_l1i_id) {
				last_l1i_id = l1i_id;
				l1i_count++;
			}
		}
		if (x86_processor->cache.l1d.size != 0) {
			const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor->cache.l1d.apic_bits);
			if (l1d_id != last_l1d_id) {
				last_l1d_id = l1d_id;
				l1d_count++;
			}
		}
		if (x86_processor->cache.l2.size != 0) {
			const uint32_t l2_id = apic_id & ~bit_mask(x86_processor->cache.l2.apic_bits);
			if (l2_id != last_l2_id) {
				last_l2_id = l2_id;
				l2_count++;
			}
		}
		if (x86_processor->cache.l3.size != 0) {
			const uint32_t l3_id = apic_id & ~bit_mask(x86_processor->cache.l3.apic_bits);
			if (l3_id != last_l3_id) {
				last_l3_id = l3_id;
				l3_count++;
			}
		}
		if (x86_processor->cache.l4.size != 0) {
			const uint32_t l4_id = apic_id & ~bit_mask(x86_processor->cache.l4.apic_bits);
			if (l4_id != last_l4_id) {
				last_l4_id = l4_id;
				l4_count++;
			}
		}
	}
	*l1i_count_ptr = l1i_count;
	*l1d_count_ptr = l1d_count;
	*l2_count_ptr  = l2_count;
	*l3_count_ptr  = l3_count;
	*l4_count_ptr  = l4_count;
}

BOOL CALLBACK cpuinfo_x86_windows_init(PINIT_ONCE init_once, PVOID parameter, PVOID* context) {
	struct cpuinfo_processor* processors = NULL;
	struct cpuinfo_core* cores = NULL;
	struct cpuinfo_cluster* clusters = NULL;
	struct cpuinfo_package* packages = NULL;
	struct cpuinfo_cache* l1i = NULL;
	struct cpuinfo_cache* l1d = NULL;
	struct cpuinfo_cache* l2 = NULL;
	struct cpuinfo_cache* l3 = NULL;
	struct cpuinfo_cache* l4 = NULL;
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX processor_infos = NULL;

	HANDLE heap = GetProcessHeap();

	struct cpuinfo_x86_processor x86_processor;
	ZeroMemory(&x86_processor, sizeof(x86_processor));
	cpuinfo_x86_init_processor(&x86_processor);
	char brand_string[48];
	cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string);

	const uint32_t thread_bits_mask = bit_mask(x86_processor.topology.thread_bits_length);
	const uint32_t core_bits_mask   = bit_mask(x86_processor.topology.core_bits_length);
	const uint32_t package_bits_offset = max(
		x86_processor.topology.thread_bits_offset + x86_processor.topology.thread_bits_length,
		x86_processor.topology.core_bits_offset + x86_processor.topology.core_bits_length);

	const uint32_t max_group_count = (uint32_t) GetMaximumProcessorGroupCount();
	cpuinfo_log_debug("detected %"PRIu32" processor groups", max_group_count);

	uint32_t processors_count = 0;
	uint32_t* processors_per_group = (uint32_t*) _alloca(max_group_count * sizeof(uint32_t));
	for (uint32_t i = 0; i < max_group_count; i++) {
		processors_per_group[i] = GetMaximumProcessorCount((WORD) i);
		cpuinfo_log_debug("detected %"PRIu32" processors in group %"PRIu32,
			processors_per_group[i], i);
		processors_count += processors_per_group[i];
	}

	uint32_t* processors_before_group = (uint32_t*) _alloca(max_group_count * sizeof(uint32_t));
	for (uint32_t i = 0, count = 0; i < max_group_count; i++) {
		processors_before_group[i] = count;
		cpuinfo_log_debug("detected %"PRIu32" processors before group %"PRIu32,
			processors_before_group[i], i);
		count += processors_per_group[i];
	}

	processors = HeapAlloc(heap, HEAP_ZERO_MEMORY, processors_count * sizeof(struct cpuinfo_processor));
	if (processors == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors",
			processors_count * sizeof(struct cpuinfo_processor), processors_count);
		goto cleanup;
	}

	DWORD cores_info_size = 0;
	if (GetLogicalProcessorInformationEx(RelationProcessorCore, NULL, &cores_info_size) == FALSE) {
		const DWORD last_error = GetLastError();
		if (last_error != ERROR_INSUFFICIENT_BUFFER) {
			cpuinfo_log_error("failed to query size of processor cores information: error %"PRIu32,
				(uint32_t) last_error);
			goto cleanup;
		}
	}

	DWORD packages_info_size = 0;
	if (GetLogicalProcessorInformationEx(RelationProcessorPackage, NULL, &packages_info_size) == FALSE) {
		const DWORD last_error = GetLastError();
		if (last_error != ERROR_INSUFFICIENT_BUFFER) {
			cpuinfo_log_error("failed to query size of processor packages information: error %"PRIu32,
				(uint32_t) last_error);
			goto cleanup;
		}
	}

	DWORD max_info_size = max(cores_info_size, packages_info_size);

	processor_infos = HeapAlloc(heap, 0, max_info_size);
	if (processor_infos == NULL) {
		cpuinfo_log_error("failed to allocate %"PRIu32" bytes for logical processor information",
			(uint32_t) max_info_size);
		goto cleanup;
	}

	if (GetLogicalProcessorInformationEx(RelationProcessorPackage, processor_infos, &max_info_size) == FALSE) {
		cpuinfo_log_error("failed to query processor packages information: error %"PRIu32,
			(uint32_t) GetLastError());
		goto cleanup;
	}

	uint32_t packages_count = 0;
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX packages_info_end =
		(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + packages_info_size);
	for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX package_info = processor_infos;
		package_info < packages_info_end;
		package_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) package_info + package_info->Size))
	{
		if (package_info->Relationship != RelationProcessorPackage) {
			cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor package information",
				(uint32_t) package_info->Relationship);
			continue;
		}

		/* We assume that packages are reported in APIC order */
		const uint32_t package_id = packages_count++;
		/* Reconstruct package part of APIC ID */
		const uint32_t package_apic_id = package_id << package_bits_offset;
		/* Iterate processor groups and set the package part of APIC ID */
		for (uint32_t i = 0; i < package_info->Processor.GroupCount; i++) {
			const uint32_t group_id = package_info->Processor.GroupMask[i].Group;
			/* Global index of the first logical processor belonging to this group */ 
			const uint32_t group_processors_start = processors_before_group[group_id];
			/* Bitmask representing processors in this group belonging to this package */
			KAFFINITY group_processors_mask = package_info->Processor.GroupMask[i].Mask;
			while (group_processors_mask != 0) {
				const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask);
				const uint32_t processor_id = group_processors_start + group_processor_id;
				processors[processor_id].package = (const struct cpuinfo_package*) NULL + package_id;
				processors[processor_id].windows_group_id = (uint16_t) group_id;
				processors[processor_id].windows_processor_id = (uint16_t) group_processor_id;
				processors[processor_id].apic_id = package_apic_id;

				/* Reset the lowest bit in affinity mask */
				group_processors_mask &= (group_processors_mask - 1);
			}
		}
	}

	max_info_size = max(cores_info_size, packages_info_size);
	if (GetLogicalProcessorInformationEx(RelationProcessorCore, processor_infos, &max_info_size) == FALSE) {
		cpuinfo_log_error("failed to query processor cores information: error %"PRIu32,
			(uint32_t) GetLastError());
		goto cleanup;
	}

	uint32_t cores_count = 0;
	/* Index (among all cores) of the the first core on the current package */
	uint32_t package_core_start = 0;
	uint32_t current_package_apic_id = 0;
	PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX cores_info_end =
		(PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) processor_infos + cores_info_size);
	for (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX core_info = processor_infos;
		core_info < cores_info_end;
		core_info = (PSYSTEM_LOGICAL_PROCESSOR_INFORMATION_EX) ((uintptr_t) core_info + core_info->Size))
	{
		if (core_info->Relationship != RelationProcessorCore) {
			cpuinfo_log_warning("unexpected processor info type (%"PRIu32") for processor core information",
				(uint32_t) core_info->Relationship);
			continue;
		}

		/* We assume that cores and logical processors are reported in APIC order */
		const uint32_t core_id = cores_count++;
		uint32_t smt_id = 0;
		/* Reconstruct core part of APIC ID */
		const uint32_t core_apic_id = (core_id & core_bits_mask) << x86_processor.topology.core_bits_offset;
		/* Iterate processor groups and set the core & SMT parts of APIC ID */
		for (uint32_t i = 0; i < core_info->Processor.GroupCount; i++) {
			const uint32_t group_id = core_info->Processor.GroupMask[i].Group;
			/* Global index of the first logical processor belonging to this group */ 
			const uint32_t group_processors_start = processors_before_group[group_id];
			/* Bitmask representing processors in this group belonging to this package */
			KAFFINITY group_processors_mask = core_info->Processor.GroupMask[i].Mask;
			while (group_processors_mask != 0) {
				const uint32_t group_processor_id = low_index_from_kaffinity(group_processors_mask);
				const uint32_t processor_id = group_processors_start + group_processor_id;

				/* Check if this is the first core on a new package */
				if (processors[processor_id].apic_id != current_package_apic_id) {
					package_core_start = core_id;
					current_package_apic_id = processors[processor_id].apic_id;
				}
				/* Core ID w.r.t package */
				const uint32_t package_core_id = core_id - package_core_start; 

				/* Update APIC ID with core and SMT parts */
				processors[processor_id].apic_id |=
					((smt_id & thread_bits_mask) << x86_processor.topology.thread_bits_offset) |
					((package_core_id & core_bits_mask) << x86_processor.topology.core_bits_offset);
				cpuinfo_log_debug("reconstructed APIC ID 0x%08"PRIx32" for processor %"PRIu32" in group %"PRIu32,
					processors[processor_id].apic_id, group_processor_id, group_id);

				/* Set SMT ID (assume logical processors within the core are reported in APIC order) */
				processors[processor_id].smt_id = smt_id++;
				processors[processor_id].core = (const struct cpuinfo_core*) NULL + core_id;

				/* Reset the lowest bit in affinity mask */
				group_processors_mask &= (group_processors_mask - 1);
			}
		}
	}

	cores = HeapAlloc(heap, HEAP_ZERO_MEMORY, cores_count * sizeof(struct cpuinfo_core));
	if (cores == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores",
			cores_count * sizeof(struct cpuinfo_core), cores_count);
		goto cleanup;
	}

	clusters = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_cluster));
	if (clusters == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters",
			packages_count * sizeof(struct cpuinfo_cluster), packages_count);
		goto cleanup;
	}

	packages = HeapAlloc(heap, HEAP_ZERO_MEMORY, packages_count * sizeof(struct cpuinfo_package));
	if (packages == NULL) {
		cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages",
			packages_count * sizeof(struct cpuinfo_package), packages_count);
		goto cleanup;
	}

	for (uint32_t i = processors_count; i != 0; i--) {
		const uint32_t processor_id = i - 1;
		struct cpuinfo_processor* processor = processors + processor_id;

		/* Adjust core and package pointers for all logical processors */
		struct cpuinfo_core* core =
			(struct cpuinfo_core*) ((uintptr_t) cores + (uintptr_t) processor->core);
		processor->core = core;
		struct cpuinfo_cluster* cluster =
			(struct cpuinfo_cluster*) ((uintptr_t) clusters + (uintptr_t) processor->cluster);
		processor->cluster = cluster;
		struct cpuinfo_package* package =
			(struct cpuinfo_package*) ((uintptr_t) packages + (uintptr_t) processor->package);
		processor->package = package;

		/* This can be overwritten by lower-index processors on the same package */
		package->processor_start = processor_id;
		package->processor_count += 1;

		/* This can be overwritten by lower-index processors on the same cluster */
		cluster->processor_start = processor_id;
		cluster->processor_count += 1;

		/* This can be overwritten by lower-index processors on the same core*/
		core->processor_start = processor_id;
		core->processor_count += 1;
	}

	/* Set vendor/uarch/CPUID information for cores */
	for (uint32_t i = cores_count; i != 0; i--) {
		const uint32_t global_core_id = i - 1;
		struct cpuinfo_core* core = cores + global_core_id;
		const struct cpuinfo_processor* processor = processors + core->processor_start;
		struct cpuinfo_package* package = (struct cpuinfo_package*) processor->package;
		struct cpuinfo_cluster* cluster = (struct cpuinfo_cluster*) processor->cluster;

		core->cluster = cluster;
		core->package = package;
		core->core_id = core_bits_mask &
			(processor->apic_id >> x86_processor.topology.core_bits_offset);
		core->vendor = x86_processor.vendor;
		core->uarch  = x86_processor.uarch;
		core->cpuid  = x86_processor.cpuid;

		/* This can be overwritten by lower-index cores on the same cluster/package */
		cluster->core_start = global_core_id;
		cluster->core_count += 1;
		package->core_start = global_core_id;
		package->core_count += 1;
	}

	for (uint32_t i = 0; i < packages_count; i++) {
		struct cpuinfo_package* package = packages + i;
		struct cpuinfo_cluster* cluster = clusters + i;

		cluster->package = package;
		cluster->vendor = cores[cluster->core_start].vendor;
		cluster->uarch = cores[cluster->core_start].uarch;
		cluster->cpuid = cores[cluster->core_start].cpuid;
		package->cluster_start = i;
		package->cluster_count = 1;
		cpuinfo_x86_format_package_name(x86_processor.vendor, brand_string, package->name);
	}

	/* Count caches */
	uint32_t l1i_count, l1d_count, l2_count, l3_count, l4_count;
	cpuinfo_x86_count_caches(processors_count, processors, &x86_processor,
		&l1i_count, &l1d_count, &l2_count, &l3_count, &l4_count);

	/* Allocate cache descriptions */
	if (l1i_count != 0) {
		l1i = HeapAlloc(heap, HEAP_ZERO_MEMORY, l1i_count * sizeof(struct cpuinfo_cache));
		if (l1i == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches",
				l1i_count * sizeof(struct cpuinfo_cache), l1i_count);
			goto cleanup;
		}
	}
	if (l1d_count != 0) {
		l1d = HeapAlloc(heap, HEAP_ZERO_MEMORY, l1d_count * sizeof(struct cpuinfo_cache));
		if (l1d == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches",
				l1d_count * sizeof(struct cpuinfo_cache), l1d_count);
			goto cleanup;
		}
	}
	if (l2_count != 0) {
		l2 = HeapAlloc(heap, HEAP_ZERO_MEMORY, l2_count * sizeof(struct cpuinfo_cache));
		if (l2 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches",
				l2_count * sizeof(struct cpuinfo_cache), l2_count);
			goto cleanup;
		}
	}
	if (l3_count != 0) {
		l3 = HeapAlloc(heap, HEAP_ZERO_MEMORY, l3_count * sizeof(struct cpuinfo_cache));
		if (l3 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches",
				l3_count * sizeof(struct cpuinfo_cache), l3_count);
			goto cleanup;
		}
	}
	if (l4_count != 0) {
		l4 = HeapAlloc(heap, HEAP_ZERO_MEMORY, l4_count * sizeof(struct cpuinfo_cache));
		if (l4 == NULL) {
			cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L4 caches",
				l4_count * sizeof(struct cpuinfo_cache), l4_count);
			goto cleanup;
		}
	}

	/* Set cache information */
	uint32_t l1i_index = UINT32_MAX, l1d_index = UINT32_MAX, l2_index = UINT32_MAX, l3_index = UINT32_MAX, l4_index = UINT32_MAX;
	uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX;
	uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX;
	for (uint32_t i = 0; i < processors_count; i++) {
		const uint32_t apic_id = processors[i].apic_id;

		if (x86_processor.cache.l1i.size != 0) {
			const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor.cache.l1i.apic_bits);
			processors[i].cache.l1i = &l1i[l1i_index];
			if (l1i_id != last_l1i_id) {
				/* new cache */
				last_l1i_id = l1i_id;
				l1i[++l1i_index] = (struct cpuinfo_cache) {
					.size            = x86_processor.cache.l1i.size,
					.associativity   = x86_processor.cache.l1i.associativity,
					.sets            = x86_processor.cache.l1i.sets,
					.partitions      = x86_processor.cache.l1i.partitions,
					.line_size       = x86_processor.cache.l1i.line_size,
					.flags           = x86_processor.cache.l1i.flags,
					.processor_start = i,
					.processor_count = 1,
				};
			} else {
				/* another processor sharing the same cache */
				l1i[l1i_index].processor_count += 1;
			}
			processors[i].cache.l1i = &l1i[l1i_index];
		} else {
			/* reset cache id */
			last_l1i_id = UINT32_MAX;
		}
		if (x86_processor.cache.l1d.size != 0) {
			const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor.cache.l1d.apic_bits);
			processors[i].cache.l1d = &l1d[l1d_index];
			if (l1d_id != last_l1d_id) {
				/* new cache */
				last_l1d_id = l1d_id;
				l1d[++l1d_index] = (struct cpuinfo_cache) {
					.size            = x86_processor.cache.l1d.size,
					.associativity   = x86_processor.cache.l1d.associativity,
					.sets            = x86_processor.cache.l1d.sets,
					.partitions      = x86_processor.cache.l1d.partitions,
					.line_size       = x86_processor.cache.l1d.line_size,
					.flags           = x86_processor.cache.l1d.flags,
					.processor_start = i,
					.processor_count = 1,
				};
			} else {
				/* another processor sharing the same cache */
				l1d[l1d_index].processor_count += 1;
			}
			processors[i].cache.l1d = &l1d[l1d_index];
		} else {
			/* reset cache id */
			last_l1d_id = UINT32_MAX;
		}
		if (x86_processor.cache.l2.size != 0) {
			const uint32_t l2_id = apic_id & ~bit_mask(x86_processor.cache.l2.apic_bits);
			processors[i].cache.l2 = &l2[l2_index];
			if (l2_id != last_l2_id) {
				/* new cache */
				last_l2_id = l2_id;
				l2[++l2_index] = (struct cpuinfo_cache) {
					.size            = x86_processor.cache.l2.size,
					.associativity   = x86_processor.cache.l2.associativity,
					.sets            = x86_processor.cache.l2.sets,
					.partitions      = x86_processor.cache.l2.partitions,
					.line_size       = x86_processor.cache.l2.line_size,
					.flags           = x86_processor.cache.l2.flags,
					.processor_start = i,
					.processor_count = 1,
				};
			} else {
				/* another processor sharing the same cache */
				l2[l2_index].processor_count += 1;
			}
			processors[i].cache.l2 = &l2[l2_index];
		} else {
			/* reset cache id */
			last_l2_id = UINT32_MAX;
		}
		if (x86_processor.cache.l3.size != 0) {
			const uint32_t l3_id = apic_id & ~bit_mask(x86_processor.cache.l3.apic_bits);
			processors[i].cache.l3 = &l3[l3_index];
			if (l3_id != last_l3_id) {
				/* new cache */
				last_l3_id = l3_id;
				l3[++l3_index] = (struct cpuinfo_cache) {
					.size            = x86_processor.cache.l3.size,
					.associativity   = x86_processor.cache.l3.associativity,
					.sets            = x86_processor.cache.l3.sets,
					.partitions      = x86_processor.cache.l3.partitions,
					.line_size       = x86_processor.cache.l3.line_size,
					.flags           = x86_processor.cache.l3.flags,
					.processor_start = i,
					.processor_count = 1,
				};
			} else {
				/* another processor sharing the same cache */
				l3[l3_index].processor_count += 1;
			}
			processors[i].cache.l3 = &l3[l3_index];
		} else {
			/* reset cache id */
			last_l3_id = UINT32_MAX;
		}
		if (x86_processor.cache.l4.size != 0) {
			const uint32_t l4_id = apic_id & ~bit_mask(x86_processor.cache.l4.apic_bits);
			processors[i].cache.l4 = &l4[l4_index];
			if (l4_id != last_l4_id) {
				/* new cache */
				last_l4_id = l4_id;
				l4[++l4_index] = (struct cpuinfo_cache) {
					.size            = x86_processor.cache.l4.size,
					.associativity   = x86_processor.cache.l4.associativity,
					.sets            = x86_processor.cache.l4.sets,
					.partitions      = x86_processor.cache.l4.partitions,
					.line_size       = x86_processor.cache.l4.line_size,
					.flags           = x86_processor.cache.l4.flags,
					.processor_start = i,
					.processor_count = 1,
				};
			} else {
				/* another processor sharing the same cache */
				l4[l4_index].processor_count += 1;
			}
			processors[i].cache.l4 = &l4[l4_index];
		} else {
			/* reset cache id */
			last_l4_id = UINT32_MAX;
		}
	}


	/* Commit changes */
	cpuinfo_processors = processors;
	cpuinfo_cores = cores;
	cpuinfo_clusters = clusters;
	cpuinfo_packages = packages;
	cpuinfo_cache[cpuinfo_cache_level_1i] = l1i;
	cpuinfo_cache[cpuinfo_cache_level_1d] = l1d;
	cpuinfo_cache[cpuinfo_cache_level_2]  = l2;
	cpuinfo_cache[cpuinfo_cache_level_3]  = l3;
	cpuinfo_cache[cpuinfo_cache_level_4]  = l4;

	cpuinfo_processors_count = processors_count;
	cpuinfo_cores_count = cores_count;
	cpuinfo_clusters_count = packages_count;
	cpuinfo_packages_count = packages_count;
	cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1i_count;
	cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1d_count;
	cpuinfo_cache_count[cpuinfo_cache_level_2]  = l2_count;
	cpuinfo_cache_count[cpuinfo_cache_level_3]  = l3_count;
	cpuinfo_cache_count[cpuinfo_cache_level_4]  = l4_count;
	cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]);

	cpuinfo_global_uarch = (struct cpuinfo_uarch_info) {
		.uarch = x86_processor.uarch,
		.cpuid = x86_processor.cpuid,
		.processor_count = processors_count,
		.core_count = cores_count,
	};

	MemoryBarrier();

	cpuinfo_is_initialized = true;

	processors = NULL;
	cores = NULL;
	clusters = NULL;
	packages = NULL;
	l1i = l1d = l2 = l3 = l4 = NULL;

cleanup:
	if (processors != NULL) {
		HeapFree(heap, 0, processors);
	}
	if (cores != NULL) {
		HeapFree(heap, 0, cores);
	}
	if (clusters != NULL) {
		HeapFree(heap, 0, clusters);
	}
	if (packages != NULL) {
		HeapFree(heap, 0, packages);
	}
	if (l1i != NULL) {
		HeapFree(heap, 0, l1i);
	}
	if (l1d != NULL) {
		HeapFree(heap, 0, l1d);
	}
	if (l2 != NULL) {
		HeapFree(heap, 0, l2);
	}
	if (l3 != NULL) {
		HeapFree(heap, 0, l3);
	}
	if (l4 != NULL) {
		HeapFree(heap, 0, l4);
	}
	return TRUE;
}