summaryrefslogtreecommitdiff
path: root/crypto/unexportable_key_win.cc
blob: 7e39e10de7be3b71feea3818ce8a6fdbb175b45e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include <windows.h>

#include <ncrypt.h>

#include <string>
#include <tuple>
#include <vector>

#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/numerics/checked_math.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/sys_string_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/threading/scoped_thread_priority.h"
#include "crypto/random.h"
#include "crypto/scoped_cng_types.h"
#include "crypto/sha2.h"
#include "crypto/unexportable_key.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ec_key.h"
#include "third_party/boringssl/src/include/openssl/ecdsa.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/nid.h"
#include "third_party/boringssl/src/include/openssl/rsa.h"

namespace crypto {

namespace {

const char kMetricVirtualCreateKeyError[] = "Crypto.TpmError.VirtualCreateKey";
const char kMetricVirtualFinalizeKeyError[] =
    "Crypto.TpmError.VirtualFinalizeKey";
const char kMetricVirtualOpenKeyError[] = "Crypto.TpmError.VirtualOpenKey";
const char kMetricVirtualOpenStorageError[] =
    "Crypto.TpmError.VirtualOpenStorage";

std::vector<uint8_t> CBBToVector(const CBB* cbb) {
  return std::vector<uint8_t>(CBB_data(cbb), CBB_data(cbb) + CBB_len(cbb));
}

// BCryptAlgorithmFor returns the BCrypt algorithm ID for the given Chromium
// signing algorithm.
std::optional<LPCWSTR> BCryptAlgorithmFor(
    SignatureVerifier::SignatureAlgorithm algo) {
  switch (algo) {
    case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
      return BCRYPT_RSA_ALGORITHM;

    case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
      return BCRYPT_ECDSA_P256_ALGORITHM;

    default:
      return std::nullopt;
  }
}

// GetBestSupported returns the first element of |acceptable_algorithms| that
// |provider| supports, or |nullopt| if there isn't any.
std::optional<SignatureVerifier::SignatureAlgorithm> GetBestSupported(
    NCRYPT_PROV_HANDLE provider,
    base::span<const SignatureVerifier::SignatureAlgorithm>
        acceptable_algorithms) {
  for (auto algo : acceptable_algorithms) {
    std::optional<LPCWSTR> bcrypto_algo_name = BCryptAlgorithmFor(algo);
    if (!bcrypto_algo_name) {
      continue;
    }

    SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
    if (!FAILED(NCryptIsAlgSupported(provider, *bcrypto_algo_name,
                                     /*flags=*/0))) {
      return algo;
    }
  }

  return std::nullopt;
}

// GetKeyProperty returns the given NCrypt key property of |key|.
std::optional<std::vector<uint8_t>> GetKeyProperty(NCRYPT_KEY_HANDLE key,
                                                   LPCWSTR property) {
  SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
  DWORD size;
  if (FAILED(NCryptGetProperty(key, property, nullptr, 0, &size, 0))) {
    return std::nullopt;
  }

  std::vector<uint8_t> ret(size);
  if (FAILED(
          NCryptGetProperty(key, property, ret.data(), ret.size(), &size, 0))) {
    return std::nullopt;
  }
  CHECK_EQ(ret.size(), size);

  return ret;
}

// ExportKey returns |key| exported in the given format or nullopt on error.
std::optional<std::vector<uint8_t>> ExportKey(NCRYPT_KEY_HANDLE key,
                                              LPCWSTR format) {
  SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
  DWORD output_size;
  if (FAILED(NCryptExportKey(key, 0, format, nullptr, nullptr, 0, &output_size,
                             0))) {
    return std::nullopt;
  }

  std::vector<uint8_t> output(output_size);
  if (FAILED(NCryptExportKey(key, 0, format, nullptr, output.data(),
                             output.size(), &output_size, 0))) {
    return std::nullopt;
  }
  CHECK_EQ(output.size(), output_size);

  return output;
}

std::optional<std::vector<uint8_t>> GetP256ECDSASPKI(NCRYPT_KEY_HANDLE key) {
  const std::optional<std::vector<uint8_t>> pub_key =
      ExportKey(key, BCRYPT_ECCPUBLIC_BLOB);
  if (!pub_key) {
    return std::nullopt;
  }

  // The exported key is a |BCRYPT_ECCKEY_BLOB| followed by the bytes of the
  // public key itself.
  // https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_ecckey_blob
  BCRYPT_ECCKEY_BLOB header;
  if (pub_key->size() < sizeof(header)) {
    return std::nullopt;
  }
  memcpy(&header, pub_key->data(), sizeof(header));
  // |cbKey| is documented[1] as "the length, in bytes, of the key". It is
  // not. For ECDSA public keys it is the length of a field element.
  if ((header.dwMagic != BCRYPT_ECDSA_PUBLIC_P256_MAGIC &&
       header.dwMagic != BCRYPT_ECDSA_PUBLIC_GENERIC_MAGIC) ||
      header.cbKey != 256 / 8 ||
      pub_key->size() - sizeof(BCRYPT_ECCKEY_BLOB) != 64) {
    return std::nullopt;
  }

  // Sometimes NCrypt will return a generic dwMagic even when asked for a P-256
  // key. In that case, do extra validation to make sure that `key` is in fact
  // a P-256 key.
  if (header.dwMagic == BCRYPT_ECDSA_PUBLIC_GENERIC_MAGIC) {
    const std::optional<std::vector<uint8_t>> curve_name =
        GetKeyProperty(key, NCRYPT_ECC_CURVE_NAME_PROPERTY);
    if (!curve_name) {
      return std::nullopt;
    }

    if (curve_name->size() != sizeof(BCRYPT_ECC_CURVE_NISTP256) ||
        memcmp(curve_name->data(), BCRYPT_ECC_CURVE_NISTP256,
               sizeof(BCRYPT_ECC_CURVE_NISTP256)) != 0) {
      return std::nullopt;
    }
  }

  uint8_t x962[1 + 32 + 32];
  x962[0] = POINT_CONVERSION_UNCOMPRESSED;
  memcpy(&x962[1], pub_key->data() + sizeof(BCRYPT_ECCKEY_BLOB), 64);

  bssl::UniquePtr<EC_GROUP> p256(
      EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
  bssl::UniquePtr<EC_POINT> point(EC_POINT_new(p256.get()));
  if (!EC_POINT_oct2point(p256.get(), point.get(), x962, sizeof(x962),
                          /*ctx=*/nullptr)) {
    return std::nullopt;
  }
  bssl::UniquePtr<EC_KEY> ec_key(
      EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
  CHECK(EC_KEY_set_public_key(ec_key.get(), point.get()));
  bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
  CHECK(EVP_PKEY_set1_EC_KEY(pkey.get(), ec_key.get()));

  bssl::ScopedCBB cbb;
  CHECK(CBB_init(cbb.get(), /*initial_capacity=*/128) &&
        EVP_marshal_public_key(cbb.get(), pkey.get()));
  return CBBToVector(cbb.get());
}

std::optional<std::vector<uint8_t>> GetRSASPKI(NCRYPT_KEY_HANDLE key) {
  const std::optional<std::vector<uint8_t>> pub_key =
      ExportKey(key, BCRYPT_RSAPUBLIC_BLOB);
  if (!pub_key) {
    return std::nullopt;
  }

  // The exported key is a |BCRYPT_RSAKEY_BLOB| followed by the bytes of the
  // key itself.
  // https://docs.microsoft.com/en-us/windows/win32/api/bcrypt/ns-bcrypt-bcrypt_rsakey_blob
  BCRYPT_RSAKEY_BLOB header;
  if (pub_key->size() < sizeof(header)) {
    return std::nullopt;
  }
  memcpy(&header, pub_key->data(), sizeof(header));
  if (header.Magic != static_cast<ULONG>(BCRYPT_RSAPUBLIC_MAGIC)) {
    return std::nullopt;
  }

  size_t bytes_needed;
  if (!base::CheckAdd(sizeof(BCRYPT_RSAKEY_BLOB),
                      base::CheckAdd(header.cbPublicExp, header.cbModulus))
           .AssignIfValid(&bytes_needed) ||
      pub_key->size() < bytes_needed) {
    return std::nullopt;
  }

  bssl::UniquePtr<BIGNUM> e(
      BN_bin2bn(&pub_key->data()[sizeof(BCRYPT_RSAKEY_BLOB)],
                header.cbPublicExp, nullptr));
  bssl::UniquePtr<BIGNUM> n(BN_bin2bn(
      &pub_key->data()[sizeof(BCRYPT_RSAKEY_BLOB) + header.cbPublicExp],
      header.cbModulus, nullptr));

  bssl::UniquePtr<RSA> rsa(RSA_new());
  CHECK(RSA_set0_key(rsa.get(), n.release(), e.release(), nullptr));
  bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
  CHECK(EVP_PKEY_set1_RSA(pkey.get(), rsa.get()));

  bssl::ScopedCBB cbb;
  CHECK(CBB_init(cbb.get(), /*initial_capacity=*/384) &&
        EVP_marshal_public_key(cbb.get(), pkey.get()));
  return CBBToVector(cbb.get());
}

std::optional<std::vector<uint8_t>> SignECDSA(NCRYPT_KEY_HANDLE key,
                                              base::span<const uint8_t> data) {
  base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
                                                base::BlockingType::WILL_BLOCK);

  std::array<uint8_t, kSHA256Length> digest = SHA256Hash(data);
  // The signature is written as a pair of big-endian field elements for P-256
  // ECDSA.
  std::vector<uint8_t> sig(64);
  DWORD sig_size;
  {
    SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
    if (FAILED(NCryptSignHash(key, nullptr, digest.data(), digest.size(),
                              sig.data(), sig.size(), &sig_size,
                              NCRYPT_SILENT_FLAG))) {
      return std::nullopt;
    }
  }
  CHECK_EQ(sig.size(), sig_size);

  bssl::UniquePtr<BIGNUM> r(BN_bin2bn(sig.data(), 32, nullptr));
  bssl::UniquePtr<BIGNUM> s(BN_bin2bn(sig.data() + 32, 32, nullptr));
  ECDSA_SIG sig_st;
  sig_st.r = r.get();
  sig_st.s = s.get();

  bssl::ScopedCBB cbb;
  CHECK(CBB_init(cbb.get(), /*initial_capacity=*/72) &&
        ECDSA_SIG_marshal(cbb.get(), &sig_st));
  return CBBToVector(cbb.get());
}

std::optional<std::vector<uint8_t>> SignRSA(NCRYPT_KEY_HANDLE key,
                                            base::span<const uint8_t> data) {
  base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
                                                base::BlockingType::WILL_BLOCK);

  std::array<uint8_t, kSHA256Length> digest = SHA256Hash(data);
  BCRYPT_PKCS1_PADDING_INFO padding_info = {0};
  padding_info.pszAlgId = NCRYPT_SHA256_ALGORITHM;

  DWORD sig_size;
  SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
  if (FAILED(NCryptSignHash(key, &padding_info, digest.data(), digest.size(),
                            nullptr, 0, &sig_size,
                            NCRYPT_SILENT_FLAG | BCRYPT_PAD_PKCS1))) {
    return std::nullopt;
  }

  std::vector<uint8_t> sig(sig_size);
  if (FAILED(NCryptSignHash(key, &padding_info, digest.data(), digest.size(),
                            sig.data(), sig.size(), &sig_size,
                            NCRYPT_SILENT_FLAG | BCRYPT_PAD_PKCS1))) {
    return std::nullopt;
  }
  CHECK_EQ(sig.size(), sig_size);

  return sig;
}

// ECDSAKey wraps a TPM-stored P-256 ECDSA key.
class ECDSAKey : public UnexportableSigningKey {
 public:
  ECDSAKey(ScopedNCryptKey key,
           std::vector<uint8_t> wrapped,
           std::vector<uint8_t> spki)
      : key_(std::move(key)),
        wrapped_(std::move(wrapped)),
        spki_(std::move(spki)) {}

  SignatureVerifier::SignatureAlgorithm Algorithm() const override {
    return SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256;
  }

  std::vector<uint8_t> GetSubjectPublicKeyInfo() const override {
    return spki_;
  }

  std::vector<uint8_t> GetWrappedKey() const override { return wrapped_; }

  std::optional<std::vector<uint8_t>> SignSlowly(
      base::span<const uint8_t> data) override {
    return SignECDSA(key_.get(), data);
  }

 private:
  ScopedNCryptKey key_;
  const std::vector<uint8_t> wrapped_;
  const std::vector<uint8_t> spki_;
};

// RSAKey wraps a TPM-stored RSA key.
class RSAKey : public UnexportableSigningKey {
 public:
  RSAKey(ScopedNCryptKey key,
         std::vector<uint8_t> wrapped,
         std::vector<uint8_t> spki)
      : key_(std::move(key)),
        wrapped_(std::move(wrapped)),
        spki_(std::move(spki)) {}

  SignatureVerifier::SignatureAlgorithm Algorithm() const override {
    return SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256;
  }

  std::vector<uint8_t> GetSubjectPublicKeyInfo() const override {
    return spki_;
  }

  std::vector<uint8_t> GetWrappedKey() const override { return wrapped_; }

  std::optional<std::vector<uint8_t>> SignSlowly(
      base::span<const uint8_t> data) override {
    return SignRSA(key_.get(), data);
  }

 private:
  ScopedNCryptKey key_;
  const std::vector<uint8_t> wrapped_;
  const std::vector<uint8_t> spki_;
};

// UnexportableKeyProviderWin uses NCrypt and the Platform Crypto
// Provider to expose TPM-backed keys on Windows.
class UnexportableKeyProviderWin : public UnexportableKeyProvider {
 public:
  ~UnexportableKeyProviderWin() override = default;

  std::optional<SignatureVerifier::SignatureAlgorithm> SelectAlgorithm(
      base::span<const SignatureVerifier::SignatureAlgorithm>
          acceptable_algorithms) override {
    ScopedNCryptProvider provider;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      if (FAILED(NCryptOpenStorageProvider(
              ScopedNCryptProvider::Receiver(provider).get(),
              MS_PLATFORM_CRYPTO_PROVIDER, /*flags=*/0))) {
        return std::nullopt;
      }
    }

    return GetBestSupported(provider.get(), acceptable_algorithms);
  }

  std::unique_ptr<UnexportableSigningKey> GenerateSigningKeySlowly(
      base::span<const SignatureVerifier::SignatureAlgorithm>
          acceptable_algorithms) override {
    base::ScopedBlockingCall scoped_blocking_call(
        FROM_HERE, base::BlockingType::WILL_BLOCK);

    ScopedNCryptProvider provider;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      if (FAILED(NCryptOpenStorageProvider(
              ScopedNCryptProvider::Receiver(provider).get(),
              MS_PLATFORM_CRYPTO_PROVIDER, /*flags=*/0))) {
        return nullptr;
      }
    }

    std::optional<SignatureVerifier::SignatureAlgorithm> algo =
        GetBestSupported(provider.get(), acceptable_algorithms);
    if (!algo) {
      return nullptr;
    }

    ScopedNCryptKey key;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      // An empty key name stops the key being persisted to disk.
      if (FAILED(NCryptCreatePersistedKey(
              provider.get(), ScopedNCryptKey::Receiver(key).get(),
              BCryptAlgorithmFor(*algo).value(), /*pszKeyName=*/nullptr,
              /*dwLegacyKeySpec=*/0, /*dwFlags=*/0))) {
        return nullptr;
      }

      if (FAILED(NCryptFinalizeKey(key.get(), NCRYPT_SILENT_FLAG))) {
        return nullptr;
      }
    }

    const std::optional<std::vector<uint8_t>> wrapped_key =
        ExportKey(key.get(), BCRYPT_OPAQUE_KEY_BLOB);
    if (!wrapped_key) {
      return nullptr;
    }

    std::optional<std::vector<uint8_t>> spki;
    switch (*algo) {
      case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
        spki = GetP256ECDSASPKI(key.get());
        if (!spki) {
          return nullptr;
        }
        return std::make_unique<ECDSAKey>(
            std::move(key), std::move(*wrapped_key), std::move(spki.value()));
      case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
        spki = GetRSASPKI(key.get());
        if (!spki) {
          return nullptr;
        }
        return std::make_unique<RSAKey>(std::move(key), std::move(*wrapped_key),
                                        std::move(spki.value()));
      default:
        return nullptr;
    }
  }

  std::unique_ptr<UnexportableSigningKey> FromWrappedSigningKeySlowly(
      base::span<const uint8_t> wrapped) override {
    base::ScopedBlockingCall scoped_blocking_call(
        FROM_HERE, base::BlockingType::WILL_BLOCK);

    ScopedNCryptProvider provider;
    ScopedNCryptKey key;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      if (FAILED(NCryptOpenStorageProvider(
              ScopedNCryptProvider::Receiver(provider).get(),
              MS_PLATFORM_CRYPTO_PROVIDER, /*flags=*/0))) {
        return nullptr;
      }

      if (FAILED(NCryptImportKey(
              provider.get(), /*hImportKey=*/NULL, BCRYPT_OPAQUE_KEY_BLOB,
              /*pParameterList=*/nullptr, ScopedNCryptKey::Receiver(key).get(),
              const_cast<PBYTE>(wrapped.data()), wrapped.size(),
              /*dwFlags=*/NCRYPT_SILENT_FLAG))) {
        return nullptr;
      }
    }

    const std::optional<std::vector<uint8_t>> algo_bytes =
        GetKeyProperty(key.get(), NCRYPT_ALGORITHM_PROPERTY);
    if (!algo_bytes) {
      return nullptr;
    }

    // The documentation suggests that |NCRYPT_ALGORITHM_PROPERTY| should return
    // the original algorithm, i.e. |BCRYPT_ECDSA_P256_ALGORITHM| for ECDSA. But
    // it actually returns just "ECDSA" for that case.
    static const wchar_t kECDSA[] = L"ECDSA";
    static const wchar_t kRSA[] = BCRYPT_RSA_ALGORITHM;

    std::optional<std::vector<uint8_t>> spki;
    if (algo_bytes->size() == sizeof(kECDSA) &&
        memcmp(algo_bytes->data(), kECDSA, sizeof(kECDSA)) == 0) {
      spki = GetP256ECDSASPKI(key.get());
      if (!spki) {
        return nullptr;
      }
      return std::make_unique<ECDSAKey>(
          std::move(key), std::vector<uint8_t>(wrapped.begin(), wrapped.end()),
          std::move(spki.value()));
    } else if (algo_bytes->size() == sizeof(kRSA) &&
               memcmp(algo_bytes->data(), kRSA, sizeof(kRSA)) == 0) {
      spki = GetRSASPKI(key.get());
      if (!spki) {
        return nullptr;
      }
      return std::make_unique<RSAKey>(
          std::move(key), std::vector<uint8_t>(wrapped.begin(), wrapped.end()),
          std::move(spki.value()));
    }

    return nullptr;
  }
};

// ECDSASoftwareKey wraps a Credential Guard stored P-256 ECDSA key.
class ECDSASoftwareKey : public VirtualUnexportableSigningKey {
 public:
  ECDSASoftwareKey(ScopedNCryptKey key,
                   std::string name,
                   std::vector<uint8_t> spki)
      : key_(std::move(key)), name_(std::move(name)), spki_(std::move(spki)) {}

  SignatureVerifier::SignatureAlgorithm Algorithm() const override {
    return SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256;
  }

  std::vector<uint8_t> GetSubjectPublicKeyInfo() const override {
    return spki_;
  }

  std::string GetKeyName() const override { return name_; }

  std::optional<std::vector<uint8_t>> Sign(
      base::span<const uint8_t> data) override {
    if (!key_.is_valid()) {
      return std::nullopt;
    }

    return SignECDSA(key_.get(), data);
  }

  void DeleteKey() override {
    if (!key_.is_valid()) {
      return;
    }

    // If key deletion succeeds, NCryptDeleteKey frees the key. To avoid double
    // free, we need to release the key from the ScopedNCryptKey RAII object.
    // Key deletion can fail in circumstances which are not under the
    // application's control. For these cases, ScopedNCrypt key should free the
    // key.
    if (NCryptDeleteKey(key_.get(), NCRYPT_SILENT_FLAG) == ERROR_SUCCESS) {
      static_cast<void>(key_.release());
    }
  }

 private:
  ScopedNCryptKey key_;
  const std::string name_;
  const std::vector<uint8_t> spki_;
};

// RSASoftwareKey wraps a Credential Guard stored RSA key.
class RSASoftwareKey : public VirtualUnexportableSigningKey {
 public:
  RSASoftwareKey(ScopedNCryptKey key,
                 std::string name,
                 std::vector<uint8_t> spki)
      : key_(std::move(key)), name_(std::move(name)), spki_(std::move(spki)) {}

  SignatureVerifier::SignatureAlgorithm Algorithm() const override {
    return SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256;
  }

  std::vector<uint8_t> GetSubjectPublicKeyInfo() const override {
    return spki_;
  }

  std::string GetKeyName() const override { return name_; }

  std::optional<std::vector<uint8_t>> Sign(
      base::span<const uint8_t> data) override {
    if (!key_.is_valid()) {
      return std::nullopt;
    }

    return SignRSA(key_.get(), data);
  }

  void DeleteKey() override {
    if (!key_.is_valid()) {
      return;
    }

    // If key deletion succeeds, NCryptDeleteKey frees the key. To avoid double
    // free, we need to release the key from the ScopedNCryptKey RAII object.
    // Key deletion can fail in circumstances which are not under the
    // application's control. For these cases, ScopedNCrypt key should free the
    // key.
    if (NCryptDeleteKey(key_.get(), NCRYPT_SILENT_FLAG) == ERROR_SUCCESS) {
      static_cast<void>(key_.release());
    }
  }

 private:
  ScopedNCryptKey key_;
  std::string name_;
  const std::vector<uint8_t> spki_;
};

// UnexportableKeyProviderWin uses NCrypt and the Platform Crypto
// Provider to expose Credential Guard backed keys on Windows.
class VirtualUnexportableKeyProviderWin
    : public VirtualUnexportableKeyProvider {
 public:
  ~VirtualUnexportableKeyProviderWin() override = default;

  std::optional<SignatureVerifier::SignatureAlgorithm> SelectAlgorithm(
      base::span<const SignatureVerifier::SignatureAlgorithm>
          acceptable_algorithms) override {
    ScopedNCryptProvider provider;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      SECURITY_STATUS status = NCryptOpenStorageProvider(
          ScopedNCryptProvider::Receiver(provider).get(),
          MS_KEY_STORAGE_PROVIDER, /*dwFlags=*/0);
      if (FAILED(status)) {
        base::UmaHistogramSparse(kMetricVirtualOpenStorageError, status);
        return std::nullopt;
      }
    }

    return GetBestSupported(provider.get(), acceptable_algorithms);
  }

  std::unique_ptr<VirtualUnexportableSigningKey> GenerateSigningKey(
      base::span<const SignatureVerifier::SignatureAlgorithm>
          acceptable_algorithms,
      std::string name) override {
    base::ScopedBlockingCall scoped_blocking_call(
        FROM_HERE, base::BlockingType::WILL_BLOCK);

    ScopedNCryptProvider provider;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      SECURITY_STATUS status = NCryptOpenStorageProvider(
          ScopedNCryptProvider::Receiver(provider).get(),
          MS_KEY_STORAGE_PROVIDER, /*dwFlags=*/0);
      if (FAILED(status)) {
        base::UmaHistogramSparse(kMetricVirtualOpenStorageError, status);
        return nullptr;
      }
    }

    std::optional<SignatureVerifier::SignatureAlgorithm> algo =
        GetBestSupported(provider.get(), acceptable_algorithms);
    if (!algo) {
      return nullptr;
    }

    ScopedNCryptKey key;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      // An empty key name stops the key being persisted to disk.
      SECURITY_STATUS status = NCryptCreatePersistedKey(
          provider.get(), ScopedNCryptKey::Receiver(key).get(),
          BCryptAlgorithmFor(*algo).value(), base::SysUTF8ToWide(name).c_str(),
          /*dwLegacyKeySpec=*/0,
          /*dwFlags=*/NCRYPT_USE_VIRTUAL_ISOLATION_FLAG);
      if (FAILED(status)) {
        base::UmaHistogramSparse(kMetricVirtualCreateKeyError, status);
        return nullptr;
      }

      status = NCryptFinalizeKey(
          key.get(), NCRYPT_PROTECT_TO_LOCAL_SYSTEM | NCRYPT_SILENT_FLAG);
      if (FAILED(status)) {
        base::UmaHistogramSparse(kMetricVirtualFinalizeKeyError, status);
        return nullptr;
      }
    }

    std::optional<std::vector<uint8_t>> spki;
    switch (*algo) {
      case SignatureVerifier::SignatureAlgorithm::ECDSA_SHA256:
        spki = GetP256ECDSASPKI(key.get());
        if (!spki) {
          return nullptr;
        }
        return std::make_unique<ECDSASoftwareKey>(std::move(key), name,
                                                  std::move(spki.value()));
      case SignatureVerifier::SignatureAlgorithm::RSA_PKCS1_SHA256:
        spki = GetRSASPKI(key.get());
        if (!spki) {
          return nullptr;
        }
        return std::make_unique<RSASoftwareKey>(std::move(key), name,
                                                std::move(spki.value()));
      default:
        return nullptr;
    }
  }

  std::unique_ptr<VirtualUnexportableSigningKey> FromKeyName(
      std::string name) override {
    base::ScopedBlockingCall scoped_blocking_call(
        FROM_HERE, base::BlockingType::WILL_BLOCK);

    ScopedNCryptProvider provider;
    ScopedNCryptKey key;
    {
      SCOPED_MAY_LOAD_LIBRARY_AT_BACKGROUND_PRIORITY();
      SECURITY_STATUS status = NCryptOpenStorageProvider(
          ScopedNCryptProvider::Receiver(provider).get(),
          MS_KEY_STORAGE_PROVIDER, /*dwFlags=*/0);
      if (FAILED(status)) {
        base::UmaHistogramSparse(kMetricVirtualOpenStorageError, status);
        return nullptr;
      }

      status = NCryptOpenKey(
          provider.get(), ScopedNCryptKey::Receiver(key).get(),
          base::SysUTF8ToWide(name).c_str(), /*dwLegacyKeySpec=*/0,
          /*dwFlags*/ 0);
      if (FAILED(status)) {
        base::UmaHistogramSparse(kMetricVirtualOpenKeyError, status);
        return nullptr;
      }
    }

    const std::optional<std::vector<uint8_t>> algo_bytes =
        GetKeyProperty(key.get(), NCRYPT_ALGORITHM_PROPERTY);

    // This is the expected behavior, but note it is different from
    // TPM backed keys.
    static const wchar_t kECDSA[] = BCRYPT_ECDSA_P256_ALGORITHM;
    static const wchar_t kRSA[] = BCRYPT_RSA_ALGORITHM;

    std::optional<std::vector<uint8_t>> spki;
    if (algo_bytes->size() == sizeof(kECDSA) &&
        memcmp(algo_bytes->data(), kECDSA, sizeof(kECDSA)) == 0) {
      spki = GetP256ECDSASPKI(key.get());
      if (!spki) {
        return nullptr;
      }
      return std::make_unique<ECDSASoftwareKey>(std::move(key), name,
                                                std::move(spki.value()));
    } else if (algo_bytes->size() == sizeof(kRSA) &&
               memcmp(algo_bytes->data(), kRSA, sizeof(kRSA)) == 0) {
      spki = GetRSASPKI(key.get());
      if (!spki) {
        return nullptr;
      }
      return std::make_unique<RSASoftwareKey>(std::move(key), name,
                                              std::move(spki.value()));
    }

    return nullptr;
  }
};

}  // namespace

std::unique_ptr<UnexportableKeyProvider> GetUnexportableKeyProviderWin() {
  return std::make_unique<UnexportableKeyProviderWin>();
}

std::unique_ptr<VirtualUnexportableKeyProvider>
GetVirtualUnexportableKeyProviderWin() {
  return std::make_unique<VirtualUnexportableKeyProviderWin>();
}

}  // namespace crypto