// Copyright (c) 2017 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Tests for unique type declaration rules validator. #include #include "gmock/gmock.h" #include "test/unit_spirv.h" #include "test/val/val_code_generator.h" #include "test/val/val_fixtures.h" namespace spvtools { namespace val { namespace { using ::testing::HasSubstr; using ::testing::Not; using ::testing::Values; using ValidateConversion = spvtest::ValidateBase; std::string GenerateShaderCode( const std::string& body, const std::string& capabilities_and_extensions = "", const std::string& decorations = "", const std::string& types = "", const std::string& variables = "") { const std::string capabilities = R"( OpCapability Shader OpCapability Int64 OpCapability Float64)"; const std::string after_extension_before_decorations = R"( OpMemoryModel Logical GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft)"; const std::string after_decorations_before_types = R"( %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %s32 = OpTypeInt 32 1 %f64 = OpTypeFloat 64 %u64 = OpTypeInt 64 0 %s64 = OpTypeInt 64 1 %boolvec2 = OpTypeVector %bool 2 %s32vec2 = OpTypeVector %s32 2 %u32vec2 = OpTypeVector %u32 2 %u64vec2 = OpTypeVector %u64 2 %f32vec2 = OpTypeVector %f32 2 %f64vec2 = OpTypeVector %f64 2 %boolvec3 = OpTypeVector %bool 3 %u32vec3 = OpTypeVector %u32 3 %u64vec3 = OpTypeVector %u64 3 %s32vec3 = OpTypeVector %s32 3 %f32vec3 = OpTypeVector %f32 3 %f64vec3 = OpTypeVector %f64 3 %boolvec4 = OpTypeVector %bool 4 %u32vec4 = OpTypeVector %u32 4 %u64vec4 = OpTypeVector %u64 4 %s32vec4 = OpTypeVector %s32 4 %f32vec4 = OpTypeVector %f32 4 %f64vec4 = OpTypeVector %f64 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %f32_2 = OpConstant %f32 2 %f32_3 = OpConstant %f32 3 %f32_4 = OpConstant %f32 4 %s32_0 = OpConstant %s32 0 %s32_1 = OpConstant %s32 1 %s32_2 = OpConstant %s32 2 %s32_3 = OpConstant %s32 3 %s32_4 = OpConstant %s32 4 %s32_m1 = OpConstant %s32 -1 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %u32_2 = OpConstant %u32 2 %u32_3 = OpConstant %u32 3 %u32_4 = OpConstant %u32 4 %f64_0 = OpConstant %f64 0 %f64_1 = OpConstant %f64 1 %f64_2 = OpConstant %f64 2 %f64_3 = OpConstant %f64 3 %f64_4 = OpConstant %f64 4 %s64_0 = OpConstant %s64 0 %s64_1 = OpConstant %s64 1 %s64_2 = OpConstant %s64 2 %s64_3 = OpConstant %s64 3 %s64_4 = OpConstant %s64 4 %s64_m1 = OpConstant %s64 -1 %u64_0 = OpConstant %u64 0 %u64_1 = OpConstant %u64 1 %u64_2 = OpConstant %u64 2 %u64_3 = OpConstant %u64 3 %u64_4 = OpConstant %u64 4 %u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1 %u32vec2_12 = OpConstantComposite %u32vec2 %u32_1 %u32_2 %u32vec3_012 = OpConstantComposite %u32vec3 %u32_0 %u32_1 %u32_2 %u32vec3_123 = OpConstantComposite %u32vec3 %u32_1 %u32_2 %u32_3 %u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3 %u32vec4_1234 = OpConstantComposite %u32vec4 %u32_1 %u32_2 %u32_3 %u32_4 %s32vec2_01 = OpConstantComposite %s32vec2 %s32_0 %s32_1 %s32vec2_12 = OpConstantComposite %s32vec2 %s32_1 %s32_2 %s32vec3_012 = OpConstantComposite %s32vec3 %s32_0 %s32_1 %s32_2 %s32vec3_123 = OpConstantComposite %s32vec3 %s32_1 %s32_2 %s32_3 %s32vec4_0123 = OpConstantComposite %s32vec4 %s32_0 %s32_1 %s32_2 %s32_3 %s32vec4_1234 = OpConstantComposite %s32vec4 %s32_1 %s32_2 %s32_3 %s32_4 %f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1 %f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2 %f32vec3_012 = OpConstantComposite %f32vec3 %f32_0 %f32_1 %f32_2 %f32vec3_123 = OpConstantComposite %f32vec3 %f32_1 %f32_2 %f32_3 %f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3 %f32vec4_1234 = OpConstantComposite %f32vec4 %f32_1 %f32_2 %f32_3 %f32_4 %f64vec2_01 = OpConstantComposite %f64vec2 %f64_0 %f64_1 %f64vec2_12 = OpConstantComposite %f64vec2 %f64_1 %f64_2 %f64vec3_012 = OpConstantComposite %f64vec3 %f64_0 %f64_1 %f64_2 %f64vec3_123 = OpConstantComposite %f64vec3 %f64_1 %f64_2 %f64_3 %f64vec4_0123 = OpConstantComposite %f64vec4 %f64_0 %f64_1 %f64_2 %f64_3 %f64vec4_1234 = OpConstantComposite %f64vec4 %f64_1 %f64_2 %f64_3 %f64_4 %true = OpConstantTrue %bool %false = OpConstantFalse %bool %f32ptr_func = OpTypePointer Function %f32)"; const std::string after_variables_before_body = R"( %main = OpFunction %void None %func %main_entry = OpLabel)"; const std::string after_body = R"( OpReturn OpFunctionEnd)"; return capabilities + capabilities_and_extensions + after_extension_before_decorations + decorations + after_decorations_before_types + types + variables + after_variables_before_body + body + after_body; } std::string GenerateKernelCode( const std::string& body, const std::string& capabilities_and_extensions = "") { const std::string capabilities = R"( OpCapability Addresses OpCapability Kernel OpCapability Linkage OpCapability GenericPointer OpCapability Int64 OpCapability Float64)"; const std::string after_extension_before_body = R"( OpMemoryModel Physical32 OpenCL %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f32 = OpTypeFloat 32 %u32 = OpTypeInt 32 0 %f64 = OpTypeFloat 64 %u64 = OpTypeInt 64 0 %boolvec2 = OpTypeVector %bool 2 %u32vec2 = OpTypeVector %u32 2 %u64vec2 = OpTypeVector %u64 2 %f32vec2 = OpTypeVector %f32 2 %f64vec2 = OpTypeVector %f64 2 %boolvec3 = OpTypeVector %bool 3 %u32vec3 = OpTypeVector %u32 3 %u64vec3 = OpTypeVector %u64 3 %f32vec3 = OpTypeVector %f32 3 %f64vec3 = OpTypeVector %f64 3 %boolvec4 = OpTypeVector %bool 4 %u32vec4 = OpTypeVector %u32 4 %u64vec4 = OpTypeVector %u64 4 %f32vec4 = OpTypeVector %f32 4 %f64vec4 = OpTypeVector %f64 4 %f32_0 = OpConstant %f32 0 %f32_1 = OpConstant %f32 1 %f32_2 = OpConstant %f32 2 %f32_3 = OpConstant %f32 3 %f32_4 = OpConstant %f32 4 %u32_0 = OpConstant %u32 0 %u32_1 = OpConstant %u32 1 %u32_2 = OpConstant %u32 2 %u32_3 = OpConstant %u32 3 %u32_4 = OpConstant %u32 4 %f64_0 = OpConstant %f64 0 %f64_1 = OpConstant %f64 1 %f64_2 = OpConstant %f64 2 %f64_3 = OpConstant %f64 3 %f64_4 = OpConstant %f64 4 %u64_0 = OpConstant %u64 0 %u64_1 = OpConstant %u64 1 %u64_2 = OpConstant %u64 2 %u64_3 = OpConstant %u64 3 %u64_4 = OpConstant %u64 4 %u32vec2_01 = OpConstantComposite %u32vec2 %u32_0 %u32_1 %u32vec2_12 = OpConstantComposite %u32vec2 %u32_1 %u32_2 %u32vec3_012 = OpConstantComposite %u32vec3 %u32_0 %u32_1 %u32_2 %u32vec3_123 = OpConstantComposite %u32vec3 %u32_1 %u32_2 %u32_3 %u32vec4_0123 = OpConstantComposite %u32vec4 %u32_0 %u32_1 %u32_2 %u32_3 %u32vec4_1234 = OpConstantComposite %u32vec4 %u32_1 %u32_2 %u32_3 %u32_4 %f32vec2_01 = OpConstantComposite %f32vec2 %f32_0 %f32_1 %f32vec2_12 = OpConstantComposite %f32vec2 %f32_1 %f32_2 %f32vec3_012 = OpConstantComposite %f32vec3 %f32_0 %f32_1 %f32_2 %f32vec3_123 = OpConstantComposite %f32vec3 %f32_1 %f32_2 %f32_3 %f32vec4_0123 = OpConstantComposite %f32vec4 %f32_0 %f32_1 %f32_2 %f32_3 %f32vec4_1234 = OpConstantComposite %f32vec4 %f32_1 %f32_2 %f32_3 %f32_4 %f64vec2_01 = OpConstantComposite %f64vec2 %f64_0 %f64_1 %f64vec2_12 = OpConstantComposite %f64vec2 %f64_1 %f64_2 %f64vec3_012 = OpConstantComposite %f64vec3 %f64_0 %f64_1 %f64_2 %f64vec3_123 = OpConstantComposite %f64vec3 %f64_1 %f64_2 %f64_3 %f64vec4_0123 = OpConstantComposite %f64vec4 %f64_0 %f64_1 %f64_2 %f64_3 %f64vec4_1234 = OpConstantComposite %f64vec4 %f64_1 %f64_2 %f64_3 %f64_4 %u64vec2_01 = OpConstantComposite %u64vec2 %u64_0 %u64_1 %true = OpConstantTrue %bool %false = OpConstantFalse %bool %f32ptr_func = OpTypePointer Function %f32 %u32ptr_func = OpTypePointer Function %u32 %f32ptr_gen = OpTypePointer Generic %f32 %f32ptr_inp = OpTypePointer Input %f32 %f32ptr_wg = OpTypePointer Workgroup %f32 %f32ptr_cwg = OpTypePointer CrossWorkgroup %f32 %f32inp = OpVariable %f32ptr_inp Input %main = OpFunction %void None %func %main_entry = OpLabel)"; const std::string after_body = R"( OpReturn OpFunctionEnd)"; return capabilities + capabilities_and_extensions + after_extension_before_body + body + after_body; } TEST_F(ValidateConversion, ConvertFToUSuccess) { const std::string body = R"( %val1 = OpConvertFToU %u32 %f32_1 %val2 = OpConvertFToU %u32 %f64_0 %val3 = OpConvertFToU %u32vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertFToUWrongResultType) { const std::string body = R"( %val = OpConvertFToU %s32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected unsigned int scalar or vector type as Result " "Type: ConvertFToU")); } TEST_F(ValidateConversion, ConvertFToUWrongInputType) { const std::string body = R"( %val = OpConvertFToU %u32 %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be float scalar or vector: ConvertFToU")); } TEST_F(ValidateConversion, ConvertFToUDifferentDimension) { const std::string body = R"( %val = OpConvertFToU %u32 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: ConvertFToU")); } TEST_F(ValidateConversion, ConvertFToSSuccess) { const std::string body = R"( %val1 = OpConvertFToS %s32 %f32_1 %val2 = OpConvertFToS %u32 %f64_0 %val3 = OpConvertFToS %s32vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertFToSWrongResultType) { const std::string body = R"( %val = OpConvertFToS %bool %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected int scalar or vector type as Result Type: ConvertFToS")); } TEST_F(ValidateConversion, ConvertFToSWrongInputType) { const std::string body = R"( %val = OpConvertFToS %s32 %u32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be float scalar or vector: ConvertFToS")); } TEST_F(ValidateConversion, ConvertFToSDifferentDimension) { const std::string body = R"( %val = OpConvertFToS %u32 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: ConvertFToS")); } TEST_F(ValidateConversion, ConvertSToFSuccess) { const std::string body = R"( %val1 = OpConvertSToF %f32 %u32_1 %val2 = OpConvertSToF %f32 %s64_0 %val3 = OpConvertSToF %f32vec2 %s32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertSToFWrongResultType) { const std::string body = R"( %val = OpConvertSToF %u32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected float scalar or vector type as Result Type: ConvertSToF")); } TEST_F(ValidateConversion, ConvertSToFWrongInputType) { const std::string body = R"( %val = OpConvertSToF %f32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be int scalar or vector: ConvertSToF")); } TEST_F(ValidateConversion, ConvertSToFDifferentDimension) { const std::string body = R"( %val = OpConvertSToF %f32 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: ConvertSToF")); } TEST_F(ValidateConversion, UConvertSuccess) { const std::string body = R"( %val1 = OpUConvert %u32 %u64_1 %val2 = OpUConvert %u64 %s32_0 %val3 = OpUConvert %u64vec2 %s32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, UConvertWrongResultType) { const std::string body = R"( %val = OpUConvert %s32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected unsigned int scalar or vector type as Result " "Type: UConvert")); } TEST_F(ValidateConversion, UConvertWrongInputType) { const std::string body = R"( %val = OpUConvert %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be int scalar or vector: UConvert")); } TEST_F(ValidateConversion, UConvertDifferentDimension) { const std::string body = R"( %val = OpUConvert %u32 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: UConvert")); } TEST_F(ValidateConversion, UConvertSameBitWidth) { const std::string body = R"( %val = OpUConvert %u32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have different bit width from " "Result Type: UConvert")); } TEST_F(ValidateConversion, SConvertSuccess) { const std::string body = R"( %val1 = OpSConvert %s32 %u64_1 %val2 = OpSConvert %s64 %s32_0 %val3 = OpSConvert %u64vec2 %s32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, SConvertWrongResultType) { const std::string body = R"( %val = OpSConvert %f32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected int scalar or vector type as Result Type: SConvert")); } TEST_F(ValidateConversion, SConvertWrongInputType) { const std::string body = R"( %val = OpSConvert %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be int scalar or vector: SConvert")); } TEST_F(ValidateConversion, SConvertDifferentDimension) { const std::string body = R"( %val = OpSConvert %s32 %u32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: SConvert")); } TEST_F(ValidateConversion, SConvertSameBitWidth) { const std::string body = R"( %val = OpSConvert %u32 %s32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have different bit width from " "Result Type: SConvert")); } TEST_F(ValidateConversion, FConvertSuccess) { const std::string body = R"( %val1 = OpFConvert %f32 %f64_1 %val2 = OpFConvert %f64 %f32_0 %val3 = OpFConvert %f64vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, FConvertWrongResultType) { const std::string body = R"( %val = OpFConvert %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected float scalar or vector type as Result Type: FConvert")); } TEST_F(ValidateConversion, FConvertWrongInputType) { const std::string body = R"( %val = OpFConvert %f32 %u64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be float scalar or vector: FConvert")); } TEST_F(ValidateConversion, FConvertDifferentDimension) { const std::string body = R"( %val = OpFConvert %f64 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result " "Type: FConvert")); } TEST_F(ValidateConversion, FConvertSameBitWidth) { const std::string body = R"( %val = OpFConvert %f32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have different bit width from " "Result Type: FConvert")); } TEST_F(ValidateConversion, QuantizeToF16Success) { const std::string body = R"( %val1 = OpQuantizeToF16 %f32 %f32_1 %val2 = OpQuantizeToF16 %f32 %f32_0 %val3 = OpQuantizeToF16 %f32vec2 %f32vec2_01 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, QuantizeToF16WrongResultType) { const std::string body = R"( %val = OpQuantizeToF16 %u32 %f32_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit float scalar or vector type as Result Type: " "QuantizeToF16")); } TEST_F(ValidateConversion, QuantizeToF16WrongResultTypeBitWidth) { const std::string body = R"( %val = OpQuantizeToF16 %u64 %f64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected 32-bit float scalar or vector type as Result Type: " "QuantizeToF16")); } TEST_F(ValidateConversion, QuantizeToF16WrongInputType) { const std::string body = R"( %val = OpQuantizeToF16 %f32 %f64_1 )"; CompileSuccessfully(GenerateShaderCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected input type to be equal to Result Type: QuantizeToF16")); } TEST_F(ValidateConversion, ConvertPtrToUSuccess) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val1 = OpConvertPtrToU %u32 %ptr %val2 = OpConvertPtrToU %u64 %ptr )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertPtrToUWrongResultType) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val = OpConvertPtrToU %f32 %ptr )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected unsigned int scalar type as Result Type: " "ConvertPtrToU")); } TEST_F(ValidateConversion, ConvertPtrToUNotPointer) { const std::string body = R"( %val = OpConvertPtrToU %u32 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer: ConvertPtrToU")); } TEST_F(ValidateConversion, SatConvertSToUSuccess) { const std::string body = R"( %val1 = OpSatConvertSToU %u32 %u64_2 %val2 = OpSatConvertSToU %u64 %u32_1 %val3 = OpSatConvertSToU %u64vec2 %u32vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, SatConvertSToUWrongResultType) { const std::string body = R"( %val = OpSatConvertSToU %f32 %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar or vector type as Result Type: " "SatConvertSToU")); } TEST_F(ValidateConversion, SatConvertSToUWrongInputType) { const std::string body = R"( %val = OpSatConvertSToU %u32 %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected int scalar or vector as input: SatConvertSToU")); } TEST_F(ValidateConversion, SatConvertSToUDifferentDimension) { const std::string body = R"( %val = OpSatConvertSToU %u32 %u32vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to have the same dimension as Result Type: " "SatConvertSToU")); } TEST_F(ValidateConversion, ConvertUToPtrSuccess) { const std::string body = R"( %val1 = OpConvertUToPtr %f32ptr_func %u32_1 %val2 = OpConvertUToPtr %f32ptr_func %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertUToPtrWrongResultType) { const std::string body = R"( %val = OpConvertUToPtr %f32 %u32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer: ConvertUToPtr")); } TEST_F(ValidateConversion, ConvertUToPtrNotInt) { const std::string body = R"( %val = OpConvertUToPtr %f32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar as input: ConvertUToPtr")); } TEST_F(ValidateConversion, ConvertUToPtrNotIntScalar) { const std::string body = R"( %val = OpConvertUToPtr %f32ptr_func %u32vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected int scalar as input: ConvertUToPtr")); } TEST_F(ValidateConversion, PtrCastToGenericSuccess) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_gen %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, PtrCastToGenericWrongResultType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32 %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer: PtrCastToGeneric")); } TEST_F(ValidateConversion, PtrCastToGenericWrongResultStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_func %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to have storage class Generic: " "PtrCastToGeneric")); } TEST_F(ValidateConversion, PtrCastToGenericWrongInputType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_gen %f32 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand '4[%float]' cannot be a " "type")); } TEST_F(ValidateConversion, PtrCastToGenericWrongInputStorageClass) { const std::string body = R"( %val = OpPtrCastToGeneric %f32ptr_gen %f32inp )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have storage class Workgroup, " "CrossWorkgroup or Function: PtrCastToGeneric")); } TEST_F(ValidateConversion, PtrCastToGenericPointToDifferentType) { const std::string body = R"( %ptr_func = OpVariable %u32ptr_func Function %val = OpPtrCastToGeneric %f32ptr_gen %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input and Result Type to point to the same type: " "PtrCastToGeneric")); } TEST_F(ValidateConversion, GenericCastToPtrSuccess) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32ptr_func %ptr_gen %ptr_wg = OpGenericCastToPtr %f32ptr_wg %ptr_gen %ptr_cwg = OpGenericCastToPtr %f32ptr_cwg %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, GenericCastToPtrWrongResultType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32 %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer: GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrWrongResultStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32ptr_gen %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to have storage class Workgroup, " "CrossWorkgroup or Function: GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrWrongInputType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %f32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer: GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrWrongInputStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_func2 = OpGenericCastToPtr %f32ptr_func %ptr_func )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have storage class Generic: " "GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrPointToDifferentType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtr %u32ptr_func %ptr_gen )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input and Result Type to point to the same type: " "GenericCastToPtr")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitSuccess) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %ptr_gen Function %ptr_wg = OpGenericCastToPtrExplicit %f32ptr_wg %ptr_gen Workgroup %ptr_cwg = OpGenericCastToPtrExplicit %f32ptr_cwg %ptr_gen CrossWorkgroup )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongResultType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32 %ptr_gen Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected Result Type to be a pointer: GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitResultStorageClassDiffers) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %ptr_gen Workgroup )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to be of target storage class: " "GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongResultStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_gen %ptr_gen Generic )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected target storage class to be Workgroup, " "CrossWorkgroup or Function: GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongInputType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %f32_1 Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input to be a pointer: GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitWrongInputStorageClass) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_func2 = OpGenericCastToPtrExplicit %f32ptr_func %ptr_func Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to have storage class Generic: " "GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, GenericCastToPtrExplicitPointToDifferentType) { const std::string body = R"( %ptr_func = OpVariable %f32ptr_func Function %ptr_gen = OpPtrCastToGeneric %f32ptr_gen %ptr_func %ptr_func2 = OpGenericCastToPtrExplicit %u32ptr_func %ptr_gen Function )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected input and Result Type to point to the same type: " "GenericCastToPtrExplicit")); } TEST_F(ValidateConversion, CoopMatConversionSuccess) { const std::string body = R"( OpCapability Shader OpCapability Float16 OpCapability Int16 OpCapability CooperativeMatrixNV OpExtension "SPV_NV_cooperative_matrix" OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f16 = OpTypeFloat 16 %f32 = OpTypeFloat 32 %u16 = OpTypeInt 16 0 %u32 = OpTypeInt 32 0 %s16 = OpTypeInt 16 1 %s32 = OpTypeInt 32 1 %u32_8 = OpConstant %u32 8 %subgroup = OpConstant %u32 3 %f16mat = OpTypeCooperativeMatrixNV %f16 %subgroup %u32_8 %u32_8 %f32mat = OpTypeCooperativeMatrixNV %f32 %subgroup %u32_8 %u32_8 %u16mat = OpTypeCooperativeMatrixNV %u16 %subgroup %u32_8 %u32_8 %u32mat = OpTypeCooperativeMatrixNV %u32 %subgroup %u32_8 %u32_8 %s16mat = OpTypeCooperativeMatrixNV %s16 %subgroup %u32_8 %u32_8 %s32mat = OpTypeCooperativeMatrixNV %s32 %subgroup %u32_8 %u32_8 %f16_1 = OpConstant %f16 1 %f32_1 = OpConstant %f32 1 %u16_1 = OpConstant %u16 1 %u32_1 = OpConstant %u32 1 %s16_1 = OpConstant %s16 1 %s32_1 = OpConstant %s32 1 %f16mat_1 = OpConstantComposite %f16mat %f16_1 %f32mat_1 = OpConstantComposite %f32mat %f32_1 %u16mat_1 = OpConstantComposite %u16mat %u16_1 %u32mat_1 = OpConstantComposite %u32mat %u32_1 %s16mat_1 = OpConstantComposite %s16mat %s16_1 %s32mat_1 = OpConstantComposite %s32mat %s32_1 %main = OpFunction %void None %func %main_entry = OpLabel %val11 = OpConvertFToU %u16mat %f16mat_1 %val12 = OpConvertFToU %u32mat %f16mat_1 %val13 = OpConvertFToS %s16mat %f16mat_1 %val14 = OpConvertFToS %s32mat %f16mat_1 %val15 = OpFConvert %f32mat %f16mat_1 %val21 = OpConvertFToU %u16mat %f32mat_1 %val22 = OpConvertFToU %u32mat %f32mat_1 %val23 = OpConvertFToS %s16mat %f32mat_1 %val24 = OpConvertFToS %s32mat %f32mat_1 %val25 = OpFConvert %f16mat %f32mat_1 %val31 = OpConvertUToF %f16mat %u16mat_1 %val32 = OpConvertUToF %f32mat %u16mat_1 %val33 = OpUConvert %u32mat %u16mat_1 %val34 = OpSConvert %s32mat %u16mat_1 %val41 = OpConvertSToF %f16mat %s16mat_1 %val42 = OpConvertSToF %f32mat %s16mat_1 %val43 = OpUConvert %u32mat %s16mat_1 %val44 = OpSConvert %s32mat %s16mat_1 OpReturn OpFunctionEnd)"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, CoopMatConversionShapesMismatchFail) { const std::string body = R"( OpCapability Shader OpCapability Float16 OpCapability Int16 OpCapability CooperativeMatrixNV OpExtension "SPV_NV_cooperative_matrix" OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f16 = OpTypeFloat 16 %f32 = OpTypeFloat 32 %u16 = OpTypeInt 16 0 %u32 = OpTypeInt 32 0 %s16 = OpTypeInt 16 1 %s32 = OpTypeInt 32 1 %u32_8 = OpConstant %u32 8 %u32_4 = OpConstant %u32 4 %subgroup = OpConstant %u32 3 %f16mat = OpTypeCooperativeMatrixNV %f16 %subgroup %u32_8 %u32_8 %f32mat = OpTypeCooperativeMatrixNV %f32 %subgroup %u32_4 %u32_4 %f16_1 = OpConstant %f16 1 %f16mat_1 = OpConstantComposite %f16mat %f16_1 %main = OpFunction %void None %func %main_entry = OpLabel %val15 = OpFConvert %f32mat %f16mat_1 OpReturn OpFunctionEnd)"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected rows of Matrix type and Result Type to be identical")); } TEST_F(ValidateConversion, CoopMatConversionShapesMismatchPass) { const std::string body = R"( OpCapability Shader OpCapability Float16 OpCapability Int16 OpCapability CooperativeMatrixNV OpExtension "SPV_NV_cooperative_matrix" OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f16 = OpTypeFloat 16 %f32 = OpTypeFloat 32 %u16 = OpTypeInt 16 0 %u32 = OpTypeInt 32 0 %s16 = OpTypeInt 16 1 %s32 = OpTypeInt 32 1 %u32_8 = OpConstant %u32 8 %u32_4 = OpSpecConstant %u32 4 %subgroup = OpConstant %u32 3 %f16mat = OpTypeCooperativeMatrixNV %f16 %subgroup %u32_8 %u32_8 %f32mat = OpTypeCooperativeMatrixNV %f32 %subgroup %u32_4 %u32_4 %f16_1 = OpConstant %f16 1 %f16mat_1 = OpConstantComposite %f16mat %f16_1 %main = OpFunction %void None %func %main_entry = OpLabel %val15 = OpFConvert %f32mat %f16mat_1 OpReturn OpFunctionEnd)"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, CoopMatKHRConversionSuccess) { const std::string body = R"( OpCapability Shader OpCapability Float16 OpCapability Int16 OpCapability CooperativeMatrixKHR OpExtension "SPV_KHR_cooperative_matrix" OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f16 = OpTypeFloat 16 %f32 = OpTypeFloat 32 %u16 = OpTypeInt 16 0 %u32 = OpTypeInt 32 0 %s16 = OpTypeInt 16 1 %s32 = OpTypeInt 32 1 %u32_8 = OpConstant %u32 8 %use_A = OpConstant %u32 0 %subgroup = OpConstant %u32 3 %f16mat = OpTypeCooperativeMatrixKHR %f16 %subgroup %u32_8 %u32_8 %use_A %f32mat = OpTypeCooperativeMatrixKHR %f32 %subgroup %u32_8 %u32_8 %use_A %u16mat = OpTypeCooperativeMatrixKHR %u16 %subgroup %u32_8 %u32_8 %use_A %u32mat = OpTypeCooperativeMatrixKHR %u32 %subgroup %u32_8 %u32_8 %use_A %s16mat = OpTypeCooperativeMatrixKHR %s16 %subgroup %u32_8 %u32_8 %use_A %s32mat = OpTypeCooperativeMatrixKHR %s32 %subgroup %u32_8 %u32_8 %use_A %f16_1 = OpConstant %f16 1 %f32_1 = OpConstant %f32 1 %u16_1 = OpConstant %u16 1 %u32_1 = OpConstant %u32 1 %s16_1 = OpConstant %s16 1 %s32_1 = OpConstant %s32 1 %f16mat_1 = OpConstantComposite %f16mat %f16_1 %f32mat_1 = OpConstantComposite %f32mat %f32_1 %u16mat_1 = OpConstantComposite %u16mat %u16_1 %u32mat_1 = OpConstantComposite %u32mat %u32_1 %s16mat_1 = OpConstantComposite %s16mat %s16_1 %s32mat_1 = OpConstantComposite %s32mat %s32_1 %main = OpFunction %void None %func %main_entry = OpLabel %val11 = OpConvertFToU %u16mat %f16mat_1 %val12 = OpConvertFToU %u32mat %f16mat_1 %val13 = OpConvertFToS %s16mat %f16mat_1 %val14 = OpConvertFToS %s32mat %f16mat_1 %val15 = OpFConvert %f32mat %f16mat_1 %val21 = OpConvertFToU %u16mat %f32mat_1 %val22 = OpConvertFToU %u32mat %f32mat_1 %val23 = OpConvertFToS %s16mat %f32mat_1 %val24 = OpConvertFToS %s32mat %f32mat_1 %val25 = OpFConvert %f16mat %f32mat_1 %val31 = OpConvertUToF %f16mat %u16mat_1 %val32 = OpConvertUToF %f32mat %u16mat_1 %val33 = OpUConvert %u32mat %u16mat_1 %val34 = OpSConvert %s32mat %u16mat_1 %val41 = OpConvertSToF %f16mat %s16mat_1 %val42 = OpConvertSToF %f32mat %s16mat_1 %val43 = OpUConvert %u32mat %s16mat_1 %val44 = OpSConvert %s32mat %s16mat_1 OpReturn OpFunctionEnd)"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, CoopMatKHRConversionUseMismatchFail) { const std::string body = R"( OpCapability Shader OpCapability Float16 OpCapability Int16 OpCapability CooperativeMatrixKHR OpExtension "SPV_KHR_cooperative_matrix" OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f16 = OpTypeFloat 16 %f32 = OpTypeFloat 32 %u16 = OpTypeInt 16 0 %u32 = OpTypeInt 32 0 %s16 = OpTypeInt 16 1 %s32 = OpTypeInt 32 1 %u32_8 = OpConstant %u32 8 %u32_4 = OpConstant %u32 4 %subgroup = OpConstant %u32 3 %use_A = OpConstant %u32 0 %use_B = OpConstant %u32 1 %f16mat = OpTypeCooperativeMatrixKHR %f16 %subgroup %u32_8 %u32_8 %use_A %f32mat = OpTypeCooperativeMatrixKHR %f32 %subgroup %u32_8 %u32_8 %use_B %f16_1 = OpConstant %f16 1 %f16mat_1 = OpConstantComposite %f16mat %f16_1 %main = OpFunction %void None %func %main_entry = OpLabel %val1 = OpFConvert %f32mat %f16mat_1 OpReturn OpFunctionEnd)"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Use of Matrix type and Result Type to be identical")); } TEST_F(ValidateConversion, CoopMatKHRConversionScopeMismatchFail) { const std::string body = R"( OpCapability Shader OpCapability Float16 OpCapability Int16 OpCapability CooperativeMatrixKHR OpExtension "SPV_KHR_cooperative_matrix" OpExtension "SPV_KHR_vulkan_memory_model" OpMemoryModel Logical GLSL450 OpEntryPoint GLCompute %main "main" %void = OpTypeVoid %func = OpTypeFunction %void %bool = OpTypeBool %f16 = OpTypeFloat 16 %f32 = OpTypeFloat 32 %u16 = OpTypeInt 16 0 %u32 = OpTypeInt 32 0 %s16 = OpTypeInt 16 1 %s32 = OpTypeInt 32 1 %u32_8 = OpConstant %u32 8 %u32_4 = OpConstant %u32 4 %subgroup = OpConstant %u32 3 %workgroup = OpConstant %u32 2 %use_A = OpConstant %u32 0 %f16mat = OpTypeCooperativeMatrixKHR %f16 %subgroup %u32_8 %u32_8 %use_A %f32mat = OpTypeCooperativeMatrixKHR %f32 %workgroup %u32_8 %u32_8 %use_A %f16_1 = OpConstant %f16 1 %f16mat_1 = OpConstantComposite %f16mat %f16_1 %main = OpFunction %void None %func %main_entry = OpLabel %val1 = OpFConvert %f32mat %f16mat_1 OpReturn OpFunctionEnd)"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected scopes of Matrix and Result Type to be identical")); } TEST_F(ValidateConversion, BitcastSuccess) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val1 = OpBitcast %u32 %ptr %val2 = OpBitcast %u64 %ptr %val3 = OpBitcast %f32ptr_func %u32_1 %val4 = OpBitcast %f32ptr_wg %u64_1 %val5 = OpBitcast %f32 %u32_1 %val6 = OpBitcast %f32vec2 %u32vec2_12 %val7 = OpBitcast %f32vec2 %u64_1 %val8 = OpBitcast %f64 %u32vec2_12 %val9 = OpBitcast %f32vec4 %f64vec2_12 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, BitcastSuccessSPV1p5) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val1 = OpBitcast %u32 %ptr %val2 = OpBitcast %u64 %ptr %val3 = OpBitcast %f32ptr_func %u32_1 %val4 = OpBitcast %f32ptr_wg %u64_1 %val5 = OpBitcast %f32 %u32_1 %val6 = OpBitcast %f32vec2 %u32vec2_12 %val7 = OpBitcast %f32vec2 %u64_1 %val8 = OpBitcast %f64 %u32vec2_12 %val9 = OpBitcast %f32vec4 %f64vec2_12 %val10 = OpBitcast %u32ptr_func %u32vec2_01 %val11 = OpBitcast %u32vec2 %ptr )"; CompileSuccessfully(GenerateKernelCode(body).c_str(), SPV_ENV_UNIVERSAL_1_5); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5)); } TEST_F(ValidateConversion, BitcastSuccessPhysicalStorageBufferKHR) { const std::string body = R"( %ptr = OpVariable %f32ptr_func Function %val1 = OpBitcast %u32 %ptr %val2 = OpBitcast %u64 %ptr %val3 = OpBitcast %f32ptr_func %u32_1 %val4 = OpBitcast %f32ptr_wg %u64_1 %val5 = OpBitcast %f32 %u32_1 %val6 = OpBitcast %f32vec2 %u32vec2_12 %val7 = OpBitcast %f32vec2 %u64_1 %val8 = OpBitcast %f64 %u32vec2_12 %val9 = OpBitcast %f32vec4 %f64vec2_12 %val10 = OpBitcast %u32ptr_func %u32vec2_01 %val11 = OpBitcast %u32vec2 %ptr )"; CompileSuccessfully( GenerateKernelCode(body, "\nOpExtension \"SPV_KHR_physical_storage_buffer\"") .c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, BitcastInputHasNoType) { const std::string body = R"( %val = OpBitcast %u32 %f32 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand '4[%float]' cannot be a " "type")); } TEST_F(ValidateConversion, BitcastWrongResultType) { const std::string body = R"( %val = OpBitcast %bool %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr("Expected Result Type to be a pointer or int or float vector " "or scalar type: Bitcast")); } TEST_F(ValidateConversion, BitcastWrongInputType) { const std::string body = R"( %val = OpBitcast %u32 %true )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer or int or float vector " "or scalar: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongInputType) { const std::string body = R"( %val = OpBitcast %u32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer or int scalar if " "Result Type is pointer: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongInputTypeSPV1p5) { const std::string body = R"( %val = OpBitcast %u32ptr_func %f32_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str(), SPV_ENV_UNIVERSAL_1_5); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5)); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer, int scalar or 32-bit " "int vector if Result Type is pointer: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongInputTypePhysicalStorageBufferKHR) { const std::string body = R"( %val = OpBitcast %u32ptr_func %f32_1 )"; CompileSuccessfully( GenerateKernelCode(body, "\nOpExtension \"SPV_KHR_physical_storage_buffer\"") .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer, int scalar or 32-bit " "int vector if Result Type is pointer: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongInputTypeIntVectorSPV1p5) { const std::string body = R"( %val = OpBitcast %u32ptr_func %u64vec2_01 )"; CompileSuccessfully(GenerateKernelCode(body).c_str(), SPV_ENV_UNIVERSAL_1_5); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5)); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer, int scalar or 32-bit " "int vector if Result Type is pointer: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongInputTypeIntVectorPhysicalStorageBufferKHR) { const std::string body = R"( %val = OpBitcast %u32ptr_func %u64vec2_01 )"; CompileSuccessfully( GenerateKernelCode(body, "\nOpExtension \"SPV_KHR_physical_storage_buffer\"") .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected input to be a pointer, int scalar or 32-bit " "int vector if Result Type is pointer: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongResultType) { const std::string body = R"( %val = OpBitcast %f32 %f32inp )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer can only be converted to another pointer or " "int scalar: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongResultTypeSPV1p5) { const std::string body = R"( %val = OpBitcast %f32 %f32inp )"; CompileSuccessfully(GenerateKernelCode(body).c_str(), SPV_ENV_UNIVERSAL_1_5); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5)); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer can only be converted to another pointer, int " "scalar or 32-bit int vector: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongResultTypePhysicalStorageBufferKHR) { const std::string body = R"( %val = OpBitcast %f32 %f32inp )"; CompileSuccessfully( GenerateKernelCode(body, "\nOpExtension \"SPV_KHR_physical_storage_buffer\"") .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer can only be converted to another pointer, int " "scalar or 32-bit int vector: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongResultTypeIntVectorSPV1p5) { const std::string body = R"( %val = OpBitcast %u64vec2 %f32inp )"; CompileSuccessfully(GenerateKernelCode(body).c_str(), SPV_ENV_UNIVERSAL_1_5); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_5)); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer can only be converted to another pointer, int " "scalar or 32-bit int vector: Bitcast")); } TEST_F(ValidateConversion, BitcastPtrWrongResultTypeIntVectorPhysicalStorageBufferKHR) { const std::string body = R"( %val = OpBitcast %u64vec2 %f32inp )"; CompileSuccessfully( GenerateKernelCode(body, "\nOpExtension \"SPV_KHR_physical_storage_buffer\"") .c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer can only be converted to another pointer, int " "scalar or 32-bit int vector: Bitcast")); } TEST_F(ValidateConversion, BitcastDifferentTotalBitWidth) { const std::string body = R"( %val = OpBitcast %f32 %u64_1 )"; CompileSuccessfully(GenerateKernelCode(body).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT( getDiagnosticString(), HasSubstr( "Expected input to have the same total bit width as Result Type: " "Bitcast")); } TEST_F(ValidateConversion, ConvertUToPtrInputIsAType) { const std::string spirv = R"( OpCapability Addresses OpCapability Shader OpCapability Linkage OpMemoryModel Logical GLSL450 %int = OpTypeInt 32 0 %ptr_int = OpTypePointer Function %int %void = OpTypeVoid %voidfn = OpTypeFunction %void %func = OpFunction %void None %voidfn %entry = OpLabel %1 = OpConvertUToPtr %ptr_int %int OpReturn OpFunctionEnd )"; CompileSuccessfully(spirv); EXPECT_EQ(SPV_ERROR_INVALID_ID, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Operand '1[%uint]' cannot be a " "type")); } TEST_F(ValidateConversion, ConvertUToPtrPSBSuccess) { const std::string body = R"( OpCapability PhysicalStorageBufferAddresses OpCapability Int64 OpCapability Shader OpExtension "SPV_EXT_physical_storage_buffer" OpMemoryModel PhysicalStorageBuffer64 GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft %uint64 = OpTypeInt 64 0 %u64_1 = OpConstant %uint64 1 %ptr = OpTypePointer PhysicalStorageBuffer %uint64 %void = OpTypeVoid %voidfn = OpTypeFunction %void %main = OpFunction %void None %voidfn %entry = OpLabel %val1 = OpConvertUToPtr %ptr %u64_1 OpReturn OpFunctionEnd )"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertUToPtrPSBStorageClass) { const std::string body = R"( OpCapability PhysicalStorageBufferAddresses OpCapability Int64 OpCapability Shader OpExtension "SPV_EXT_physical_storage_buffer" OpMemoryModel PhysicalStorageBuffer64 GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft %uint64 = OpTypeInt 64 0 %u64_1 = OpConstant %uint64 1 %ptr = OpTypePointer Function %uint64 %void = OpTypeVoid %voidfn = OpTypeFunction %void %main = OpFunction %void None %voidfn %entry = OpLabel %val1 = OpConvertUToPtr %ptr %u64_1 %val2 = OpConvertPtrToU %uint64 %val1 OpReturn OpFunctionEnd )"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer storage class must be " "PhysicalStorageBuffer: ConvertUToPtr")); } TEST_F(ValidateConversion, ConvertUToPtrVulkanWrongWidth) { const std::string body = R"( OpCapability PhysicalStorageBufferAddresses OpCapability Int64 OpCapability Shader OpExtension "SPV_EXT_physical_storage_buffer" OpMemoryModel PhysicalStorageBuffer64 GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft %uint32 = OpTypeInt 32 0 %uint64 = OpTypeInt 64 0 %u32_1 = OpConstant %uint32 1 %ptr = OpTypePointer PhysicalStorageBuffer %uint64 %void = OpTypeVoid %voidfn = OpTypeFunction %void %main = OpFunction %void None %voidfn %entry = OpLabel %val1 = OpConvertUToPtr %ptr %u32_1 OpReturn OpFunctionEnd )"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-PhysicalStorageBuffer64-04710")); EXPECT_THAT( getDiagnosticString(), HasSubstr("PhysicalStorageBuffer64 addressing mode requires the input " "integer to have a 64-bit width for Vulkan environment.")); } TEST_F(ValidateConversion, ConvertPtrToUPSBSuccess) { const std::string body = R"( OpCapability PhysicalStorageBufferAddresses OpCapability Int64 OpCapability Shader OpExtension "SPV_EXT_physical_storage_buffer" OpMemoryModel PhysicalStorageBuffer64 GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft OpDecorate %val1 RestrictPointer %uint64 = OpTypeInt 64 0 %u64_1 = OpConstant %uint64 1 %ptr = OpTypePointer PhysicalStorageBuffer %uint64 %pptr_f = OpTypePointer Function %ptr %void = OpTypeVoid %voidfn = OpTypeFunction %void %main = OpFunction %void None %voidfn %entry = OpLabel %val1 = OpVariable %pptr_f Function %val2 = OpLoad %ptr %val1 %val3 = OpConvertPtrToU %uint64 %val2 OpReturn OpFunctionEnd )"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertPtrToUPSBStorageClass) { const std::string body = R"( OpCapability PhysicalStorageBufferAddresses OpCapability Int64 OpCapability Shader OpExtension "SPV_EXT_physical_storage_buffer" OpMemoryModel PhysicalStorageBuffer64 GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft %uint64 = OpTypeInt 64 0 %u64_1 = OpConstant %uint64 1 %ptr = OpTypePointer Function %uint64 %void = OpTypeVoid %voidfn = OpTypeFunction %void %main = OpFunction %void None %voidfn %entry = OpLabel %val1 = OpVariable %ptr Function %val2 = OpConvertPtrToU %uint64 %val1 OpReturn OpFunctionEnd )"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Pointer storage class must be " "PhysicalStorageBuffer: ConvertPtrToU")); } TEST_F(ValidateConversion, ConvertPtrToUVulkanWrongWidth) { const std::string body = R"( OpCapability PhysicalStorageBufferAddresses OpCapability Int64 OpCapability Shader OpExtension "SPV_EXT_physical_storage_buffer" OpMemoryModel PhysicalStorageBuffer64 GLSL450 OpEntryPoint Fragment %main "main" OpExecutionMode %main OriginUpperLeft OpDecorate %val1 RestrictPointer %uint32 = OpTypeInt 32 0 %uint64 = OpTypeInt 64 0 %ptr = OpTypePointer PhysicalStorageBuffer %uint64 %pptr_f = OpTypePointer Function %ptr %void = OpTypeVoid %voidfn = OpTypeFunction %void %main = OpFunction %void None %voidfn %entry = OpLabel %val1 = OpVariable %pptr_f Function %val2 = OpLoad %ptr %val1 %val3 = OpConvertPtrToU %uint32 %val2 OpReturn OpFunctionEnd )"; CompileSuccessfully(body.c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_VULKAN_1_0)); EXPECT_THAT(getDiagnosticString(), AnyVUID("VUID-StandaloneSpirv-PhysicalStorageBuffer64-04710")); EXPECT_THAT( getDiagnosticString(), HasSubstr("PhysicalStorageBuffer64 addressing mode requires the result " "integer type to have a 64-bit width for Vulkan environment.")); } TEST_F(ValidateConversion, ConvertUToAccelerationStructureU32Vec2) { const std::string extensions = R"( OpCapability RayQueryKHR OpExtension "SPV_KHR_ray_query" )"; const std::string types = R"( %u32vec2ptr_func = OpTypePointer Function %u32vec2 %typeAS = OpTypeAccelerationStructureKHR )"; const std::string body = R"( %asHandle = OpVariable %u32vec2ptr_func Function %load = OpLoad %u32vec2 %asHandle %val = OpConvertUToAccelerationStructureKHR %typeAS %load )"; CompileSuccessfully(GenerateShaderCode(body, extensions, "", types).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertUToAccelerationStructureSuccessU64) { const std::string extensions = R"( OpCapability RayQueryKHR OpExtension "SPV_KHR_ray_query" )"; const std::string types = R"( %u64_func = OpTypePointer Function %u64 %typeAS = OpTypeAccelerationStructureKHR )"; const std::string body = R"( %asHandle = OpVariable %u64_func Function %load = OpLoad %u64 %asHandle %val = OpConvertUToAccelerationStructureKHR %typeAS %load )"; CompileSuccessfully(GenerateShaderCode(body, extensions, "", types).c_str()); ASSERT_EQ(SPV_SUCCESS, ValidateInstructions()); } TEST_F(ValidateConversion, ConvertUToAccelerationStructureResult) { const std::string extensions = R"( OpCapability RayQueryKHR OpExtension "SPV_KHR_ray_query" )"; const std::string types = R"( %u32vec2ptr_func = OpTypePointer Function %u32vec2 %typeRQ = OpTypeRayQueryKHR )"; const std::string body = R"( %asHandle = OpVariable %u32vec2ptr_func Function %load = OpLoad %u32vec2 %asHandle %val = OpConvertUToAccelerationStructureKHR %typeRQ %load )"; CompileSuccessfully(GenerateShaderCode(body, extensions, "", types).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected Result Type to be a Acceleration Structure")); } TEST_F(ValidateConversion, ConvertUToAccelerationStructureU32) { const std::string extensions = R"( OpCapability RayQueryKHR OpExtension "SPV_KHR_ray_query" )"; const std::string types = R"( %u32ptr_func = OpTypePointer Function %u32 %typeAS = OpTypeAccelerationStructureKHR )"; const std::string body = R"( %asHandle = OpVariable %u32ptr_func Function %load = OpLoad %u32 %asHandle %val = OpConvertUToAccelerationStructureKHR %typeAS %load )"; CompileSuccessfully(GenerateShaderCode(body, extensions, "", types).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected 64-bit uint scalar or 2-component 32-bit " "uint vector as input")); } TEST_F(ValidateConversion, ConvertUToAccelerationStructureS64) { const std::string extensions = R"( OpCapability RayQueryKHR OpExtension "SPV_KHR_ray_query" )"; const std::string types = R"( %s64ptr_func = OpTypePointer Function %s64 %typeAS = OpTypeAccelerationStructureKHR )"; const std::string body = R"( %asHandle = OpVariable %s64ptr_func Function %load = OpLoad %s64 %asHandle %val = OpConvertUToAccelerationStructureKHR %typeAS %load )"; CompileSuccessfully(GenerateShaderCode(body, extensions, "", types).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected 64-bit uint scalar or 2-component 32-bit " "uint vector as input")); } TEST_F(ValidateConversion, ConvertUToAccelerationStructureS32Vec2) { const std::string extensions = R"( OpCapability RayQueryKHR OpExtension "SPV_KHR_ray_query" )"; const std::string types = R"( %s32vec2ptr_func = OpTypePointer Function %s32vec2 %typeAS = OpTypeAccelerationStructureKHR )"; const std::string body = R"( %asHandle = OpVariable %s32vec2ptr_func Function %load = OpLoad %s32vec2 %asHandle %val = OpConvertUToAccelerationStructureKHR %typeAS %load )"; CompileSuccessfully(GenerateShaderCode(body, extensions, "", types).c_str()); ASSERT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions()); EXPECT_THAT(getDiagnosticString(), HasSubstr("Expected 64-bit uint scalar or 2-component 32-bit " "uint vector as input")); } using ValidateSmallConversions = spvtest::ValidateBase; CodeGenerator GetSmallConversionsCodeGenerator() { CodeGenerator generator; generator.capabilities_ = R"( OpCapability Shader OpCapability Linkage OpCapability UniformAndStorageBuffer16BitAccess OpCapability UniformAndStorageBuffer8BitAccess )"; generator.extensions_ = R"( OpExtension "SPV_KHR_16bit_storage" OpExtension "SPV_KHR_8bit_storage" )"; generator.memory_model_ = "OpMemoryModel Logical GLSL450\n"; generator.before_types_ = R"( OpDecorate %char_block Block OpMemberDecorate %char_block 0 Offset 0 OpDecorate %short_block Block OpMemberDecorate %short_block 0 Offset 0 OpDecorate %half_block Block OpMemberDecorate %half_block 0 Offset 0 OpDecorate %int_block Block OpMemberDecorate %int_block 0 Offset 0 OpDecorate %float_block Block OpMemberDecorate %float_block 0 Offset 0 )"; generator.types_ = R"( %void = OpTypeVoid %int = OpTypeInt 32 0 %int_0 = OpConstant %int 0 %int_1 = OpConstant %int 1 %int2 = OpTypeVector %int 2 %float = OpTypeFloat 32 %float_0 = OpConstant %float 0 %float2 = OpTypeVector %float 2 %char = OpTypeInt 8 0 %char2 = OpTypeVector %char 2 %short = OpTypeInt 16 0 %short2 = OpTypeVector %short 2 %half = OpTypeFloat 16 %half2 = OpTypeVector %half 2 %char_block = OpTypeStruct %char2 %short_block = OpTypeStruct %short2 %half_block = OpTypeStruct %half2 %int_block = OpTypeStruct %int2 %float_block = OpTypeStruct %float2 %ptr_ssbo_char_block = OpTypePointer StorageBuffer %char_block %ptr_ssbo_char2 = OpTypePointer StorageBuffer %char2 %ptr_ssbo_char = OpTypePointer StorageBuffer %char %ptr_ssbo_short_block = OpTypePointer StorageBuffer %short_block %ptr_ssbo_short2 = OpTypePointer StorageBuffer %short2 %ptr_ssbo_short = OpTypePointer StorageBuffer %short %ptr_ssbo_half_block = OpTypePointer StorageBuffer %half_block %ptr_ssbo_half2 = OpTypePointer StorageBuffer %half2 %ptr_ssbo_half = OpTypePointer StorageBuffer %half %ptr_ssbo_int_block = OpTypePointer StorageBuffer %int_block %ptr_ssbo_int2 = OpTypePointer StorageBuffer %int2 %ptr_ssbo_int = OpTypePointer StorageBuffer %int %ptr_ssbo_float_block = OpTypePointer StorageBuffer %float_block %ptr_ssbo_float2 = OpTypePointer StorageBuffer %float2 %ptr_ssbo_float = OpTypePointer StorageBuffer %float %void_fn = OpTypeFunction %void %char_var = OpVariable %ptr_ssbo_char_block StorageBuffer %short_var = OpVariable %ptr_ssbo_short_block StorageBuffer %half_var = OpVariable %ptr_ssbo_half_block StorageBuffer %int_var = OpVariable %ptr_ssbo_int_block StorageBuffer %float_var = OpVariable %ptr_ssbo_float_block StorageBuffer )"; generator.after_types_ = R"( %func = OpFunction %void None %void_fn %entry = OpLabel %char2_gep = OpAccessChain %ptr_ssbo_char2 %char_var %int_0 %ld_char2 = OpLoad %char2 %char2_gep %char_gep = OpAccessChain %ptr_ssbo_char %char_var %int_0 %int_0 %ld_char = OpLoad %char %char_gep %short2_gep = OpAccessChain %ptr_ssbo_short2 %short_var %int_0 %ld_short2 = OpLoad %short2 %short2_gep %short_gep = OpAccessChain %ptr_ssbo_short %short_var %int_0 %int_0 %ld_short = OpLoad %short %short_gep %half2_gep = OpAccessChain %ptr_ssbo_half2 %half_var %int_0 %ld_half2 = OpLoad %half2 %half2_gep %half_gep = OpAccessChain %ptr_ssbo_half %half_var %int_0 %int_0 %ld_half = OpLoad %half %half_gep %int2_gep = OpAccessChain %ptr_ssbo_int2 %int_var %int_0 %ld_int2 = OpLoad %int2 %int2_gep %int_gep = OpAccessChain %ptr_ssbo_int %int_var %int_0 %int_0 %ld_int = OpLoad %int %int_gep %float2_gep = OpAccessChain %ptr_ssbo_float2 %float_var %int_0 %ld_float2 = OpLoad %float2 %float2_gep %float_gep = OpAccessChain %ptr_ssbo_float %float_var %int_0 %int_0 %ld_float = OpLoad %float %float_gep )"; generator.add_at_the_end_ = R"( OpReturn OpFunctionEnd )"; return generator; } TEST_P(ValidateSmallConversions, Instruction) { CodeGenerator generator = GetSmallConversionsCodeGenerator(); generator.after_types_ += GetParam() + "\n"; CompileSuccessfully(generator.Build(), SPV_ENV_UNIVERSAL_1_3); EXPECT_EQ(SPV_ERROR_INVALID_DATA, ValidateInstructions(SPV_ENV_UNIVERSAL_1_3)); EXPECT_THAT( getDiagnosticString(), HasSubstr( "8- or 16-bit types can only be used with width-only conversions")); } INSTANTIATE_TEST_SUITE_P(SmallConversionInstructions, ValidateSmallConversions, Values("%inst = OpConvertFToU %char %ld_float", "%inst = OpConvertFToU %char2 %ld_float2", "%inst = OpConvertFToU %short %ld_float", "%inst = OpConvertFToU %short2 %ld_float2", "%inst = OpConvertFToU %int %ld_half", "%inst = OpConvertFToU %int2 %ld_half2", "%inst = OpConvertFToS %char %ld_float", "%inst = OpConvertFToS %char2 %ld_float2", "%inst = OpConvertFToS %short %ld_float", "%inst = OpConvertFToS %short2 %ld_float2", "%inst = OpConvertFToS %int %ld_half", "%inst = OpConvertFToS %int2 %ld_half2", "%inst = OpConvertSToF %float %ld_char", "%inst = OpConvertSToF %float2 %ld_char2", "%inst = OpConvertSToF %float %ld_short", "%inst = OpConvertSToF %float2 %ld_short2", "%inst = OpConvertSToF %half %ld_int", "%inst = OpConvertSToF %half2 %ld_int2", "%inst = OpConvertUToF %float %ld_char", "%inst = OpConvertUToF %float2 %ld_char2", "%inst = OpConvertUToF %float %ld_short", "%inst = OpConvertUToF %float2 %ld_short2", "%inst = OpConvertUToF %half %ld_int", "%inst = OpConvertUToF %half2 %ld_int2", "%inst = OpBitcast %half %ld_short", "%inst = OpBitcast %half2 %ld_short2", "%inst = OpBitcast %short %ld_half", "%inst = OpBitcast %short2 %ld_half2")); } // namespace } // namespace val } // namespace spvtools