aboutsummaryrefslogtreecommitdiff
path: root/source/fuzz/fuzzer_pass_donate_modules.cpp
blob: 2f2ed50a72af3ff7f57e8c489bbbef5b49193cb1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
// Copyright (c) 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/fuzz/fuzzer_pass_donate_modules.h"

#include <map>
#include <queue>
#include <set>

#include "source/fuzz/call_graph.h"
#include "source/fuzz/instruction_message.h"
#include "source/fuzz/transformation_add_constant_boolean.h"
#include "source/fuzz/transformation_add_constant_composite.h"
#include "source/fuzz/transformation_add_constant_null.h"
#include "source/fuzz/transformation_add_constant_scalar.h"
#include "source/fuzz/transformation_add_function.h"
#include "source/fuzz/transformation_add_global_undef.h"
#include "source/fuzz/transformation_add_global_variable.h"
#include "source/fuzz/transformation_add_spec_constant_op.h"
#include "source/fuzz/transformation_add_type_array.h"
#include "source/fuzz/transformation_add_type_boolean.h"
#include "source/fuzz/transformation_add_type_float.h"
#include "source/fuzz/transformation_add_type_function.h"
#include "source/fuzz/transformation_add_type_int.h"
#include "source/fuzz/transformation_add_type_matrix.h"
#include "source/fuzz/transformation_add_type_pointer.h"
#include "source/fuzz/transformation_add_type_struct.h"
#include "source/fuzz/transformation_add_type_vector.h"

namespace spvtools {
namespace fuzz {

FuzzerPassDonateModules::FuzzerPassDonateModules(
    opt::IRContext* ir_context, TransformationContext* transformation_context,
    FuzzerContext* fuzzer_context,
    protobufs::TransformationSequence* transformations,
    const std::vector<fuzzerutil::ModuleSupplier>& donor_suppliers)
    : FuzzerPass(ir_context, transformation_context, fuzzer_context,
                 transformations),
      donor_suppliers_(donor_suppliers) {}

void FuzzerPassDonateModules::Apply() {
  // If there are no donor suppliers, this fuzzer pass is a no-op.
  if (donor_suppliers_.empty()) {
    return;
  }

  // Donate at least one module, and probabilistically decide when to stop
  // donating modules.
  do {
    // Choose a donor supplier at random, and get the module that it provides.
    std::unique_ptr<opt::IRContext> donor_ir_context = donor_suppliers_.at(
        GetFuzzerContext()->RandomIndex(donor_suppliers_))();
    assert(donor_ir_context != nullptr && "Supplying of donor failed");
    assert(
        fuzzerutil::IsValid(donor_ir_context.get(),
                            GetTransformationContext()->GetValidatorOptions(),
                            fuzzerutil::kSilentMessageConsumer) &&
        "The donor module must be valid");
    // Donate the supplied module.
    //
    // Randomly decide whether to make the module livesafe (see
    // FactFunctionIsLivesafe); doing so allows it to be used for live code
    // injection but restricts its behaviour to allow this, and means that its
    // functions cannot be transformed as if they were arbitrary dead code.
    bool make_livesafe = GetFuzzerContext()->ChoosePercentage(
        GetFuzzerContext()->ChanceOfMakingDonorLivesafe());
    DonateSingleModule(donor_ir_context.get(), make_livesafe);
  } while (GetFuzzerContext()->ChoosePercentage(
      GetFuzzerContext()->GetChanceOfDonatingAdditionalModule()));
}

void FuzzerPassDonateModules::DonateSingleModule(
    opt::IRContext* donor_ir_context, bool make_livesafe) {
  // Check that the donated module has capabilities, supported by the recipient
  // module.
  for (const auto& capability_inst : donor_ir_context->capabilities()) {
    auto capability =
        static_cast<SpvCapability>(capability_inst.GetSingleWordInOperand(0));
    if (!GetIRContext()->get_feature_mgr()->HasCapability(capability)) {
      return;
    }
  }

  // The ids used by the donor module may very well clash with ids defined in
  // the recipient module.  Furthermore, some instructions defined in the donor
  // module will be equivalent to instructions defined in the recipient module,
  // and it is not always legal to re-declare equivalent instructions.  For
  // example, OpTypeVoid cannot be declared twice.
  //
  // To handle this, we maintain a mapping from an id used in the donor module
  // to the corresponding id that will be used by the donated code when it
  // appears in the recipient module.
  //
  // This mapping is populated in two ways:
  // (1) by mapping a donor instruction's result id to the id of some equivalent
  //     existing instruction in the recipient (e.g. this has to be done for
  //     OpTypeVoid)
  // (2) by mapping a donor instruction's result id to a freshly chosen id that
  //     is guaranteed to be different from any id already used by the recipient
  //     (or from any id already chosen to handle a previous donor id)
  std::map<uint32_t, uint32_t> original_id_to_donated_id;

  HandleExternalInstructionImports(donor_ir_context,
                                   &original_id_to_donated_id);
  HandleTypesAndValues(donor_ir_context, &original_id_to_donated_id);
  HandleFunctions(donor_ir_context, &original_id_to_donated_id, make_livesafe);

  // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3115) Handle some
  //  kinds of decoration.
}

SpvStorageClass FuzzerPassDonateModules::AdaptStorageClass(
    SpvStorageClass donor_storage_class) {
  switch (donor_storage_class) {
    case SpvStorageClassFunction:
    case SpvStorageClassPrivate:
    case SpvStorageClassWorkgroup:
      // We leave these alone
      return donor_storage_class;
    case SpvStorageClassInput:
    case SpvStorageClassOutput:
    case SpvStorageClassUniform:
    case SpvStorageClassUniformConstant:
    case SpvStorageClassPushConstant:
    case SpvStorageClassImage:
    case SpvStorageClassStorageBuffer:
      // We change these to Private
      return SpvStorageClassPrivate;
    default:
      // Handle other cases on demand.
      assert(false && "Currently unsupported storage class.");
      return SpvStorageClassMax;
  }
}

void FuzzerPassDonateModules::HandleExternalInstructionImports(
    opt::IRContext* donor_ir_context,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
  // Consider every external instruction set import in the donor module.
  for (auto& donor_import : donor_ir_context->module()->ext_inst_imports()) {
    const auto& donor_import_name_words = donor_import.GetInOperand(0).words;
    // Look for an identical import in the recipient module.
    for (auto& existing_import : GetIRContext()->module()->ext_inst_imports()) {
      const auto& existing_import_name_words =
          existing_import.GetInOperand(0).words;
      if (donor_import_name_words == existing_import_name_words) {
        // A matching import has found.  Map the result id for the donor import
        // to the id of the existing import, so that when donor instructions
        // rely on the import they will be rewritten to use the existing import.
        original_id_to_donated_id->insert(
            {donor_import.result_id(), existing_import.result_id()});
        break;
      }
    }
    // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3116): At present
    //  we do not handle donation of instruction imports, i.e. we do not allow
    //  the donor to import instruction sets that the recipient did not already
    //  import.  It might be a good idea to allow this, but it requires some
    //  thought.
    assert(original_id_to_donated_id->count(donor_import.result_id()) &&
           "Donation of imports is not yet supported.");
  }
}

void FuzzerPassDonateModules::HandleTypesAndValues(
    opt::IRContext* donor_ir_context,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
  // Consider every type/global/constant/undef in the module.
  for (auto& type_or_value : donor_ir_context->module()->types_values()) {
    HandleTypeOrValue(type_or_value, original_id_to_donated_id);
  }
}

void FuzzerPassDonateModules::HandleTypeOrValue(
    const opt::Instruction& type_or_value,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id) {
  // The type/value instruction generates a result id, and we need to associate
  // the donor's result id with a new result id.  That new result id will either
  // be the id of some existing instruction, or a fresh id.  This variable
  // captures it.
  uint32_t new_result_id;

  // Decide how to handle each kind of instruction on a case-by-case basis.
  //
  // Because the donor module is required to be valid, when we encounter a
  // type comprised of component types (e.g. an aggregate or pointer), we know
  // that its component types will have been considered previously, and that
  // |original_id_to_donated_id| will already contain an entry for them.
  switch (type_or_value.opcode()) {
    case SpvOpTypeImage:
    case SpvOpTypeSampledImage:
    case SpvOpTypeSampler:
      // We do not donate types and variables that relate to images and
      // samplers, so we skip these types and subsequently skip anything that
      // depends on them.
      return;
    case SpvOpTypeVoid: {
      // Void has to exist already in order for us to have an entry point.
      // Get the existing id of void.
      opt::analysis::Void void_type;
      new_result_id = GetIRContext()->get_type_mgr()->GetId(&void_type);
      assert(new_result_id &&
             "The module being transformed will always have 'void' type "
             "declared.");
    } break;
    case SpvOpTypeBool: {
      // Bool cannot be declared multiple times, so use its existing id if
      // present, or add a declaration of Bool with a fresh id if not.
      opt::analysis::Bool bool_type;
      auto bool_type_id = GetIRContext()->get_type_mgr()->GetId(&bool_type);
      if (bool_type_id) {
        new_result_id = bool_type_id;
      } else {
        new_result_id = GetFuzzerContext()->GetFreshId();
        ApplyTransformation(TransformationAddTypeBoolean(new_result_id));
      }
    } break;
    case SpvOpTypeInt: {
      // Int cannot be declared multiple times with the same width and
      // signedness, so check whether an existing identical Int type is
      // present and use its id if so.  Otherwise add a declaration of the
      // Int type used by the donor, with a fresh id.
      const uint32_t width = type_or_value.GetSingleWordInOperand(0);
      const bool is_signed =
          static_cast<bool>(type_or_value.GetSingleWordInOperand(1));
      opt::analysis::Integer int_type(width, is_signed);
      auto int_type_id = GetIRContext()->get_type_mgr()->GetId(&int_type);
      if (int_type_id) {
        new_result_id = int_type_id;
      } else {
        new_result_id = GetFuzzerContext()->GetFreshId();
        ApplyTransformation(
            TransformationAddTypeInt(new_result_id, width, is_signed));
      }
    } break;
    case SpvOpTypeFloat: {
      // Similar to SpvOpTypeInt.
      const uint32_t width = type_or_value.GetSingleWordInOperand(0);
      opt::analysis::Float float_type(width);
      auto float_type_id = GetIRContext()->get_type_mgr()->GetId(&float_type);
      if (float_type_id) {
        new_result_id = float_type_id;
      } else {
        new_result_id = GetFuzzerContext()->GetFreshId();
        ApplyTransformation(TransformationAddTypeFloat(new_result_id, width));
      }
    } break;
    case SpvOpTypeVector: {
      // It is not legal to have two Vector type declarations with identical
      // element types and element counts, so check whether an existing
      // identical Vector type is present and use its id if so.  Otherwise add
      // a declaration of the Vector type used by the donor, with a fresh id.

      // When considering the vector's component type id, we look up the id
      // use in the donor to find the id to which this has been remapped.
      uint32_t component_type_id = original_id_to_donated_id->at(
          type_or_value.GetSingleWordInOperand(0));
      auto component_type =
          GetIRContext()->get_type_mgr()->GetType(component_type_id);
      assert(component_type && "The base type should be registered.");
      auto component_count = type_or_value.GetSingleWordInOperand(1);
      opt::analysis::Vector vector_type(component_type, component_count);
      auto vector_type_id = GetIRContext()->get_type_mgr()->GetId(&vector_type);
      if (vector_type_id) {
        new_result_id = vector_type_id;
      } else {
        new_result_id = GetFuzzerContext()->GetFreshId();
        ApplyTransformation(TransformationAddTypeVector(
            new_result_id, component_type_id, component_count));
      }
    } break;
    case SpvOpTypeMatrix: {
      // Similar to SpvOpTypeVector.
      uint32_t column_type_id = original_id_to_donated_id->at(
          type_or_value.GetSingleWordInOperand(0));
      auto column_type =
          GetIRContext()->get_type_mgr()->GetType(column_type_id);
      assert(column_type && column_type->AsVector() &&
             "The column type should be a registered vector type.");
      auto column_count = type_or_value.GetSingleWordInOperand(1);
      opt::analysis::Matrix matrix_type(column_type, column_count);
      auto matrix_type_id = GetIRContext()->get_type_mgr()->GetId(&matrix_type);
      if (matrix_type_id) {
        new_result_id = matrix_type_id;
      } else {
        new_result_id = GetFuzzerContext()->GetFreshId();
        ApplyTransformation(TransformationAddTypeMatrix(
            new_result_id, column_type_id, column_count));
      }

    } break;
    case SpvOpTypeArray: {
      // It is OK to have multiple structurally identical array types, so
      // we go ahead and add a remapped version of the type declared by the
      // donor.
      uint32_t component_type_id = type_or_value.GetSingleWordInOperand(0);
      if (!original_id_to_donated_id->count(component_type_id)) {
        // We did not donate the component type of this array type, so we
        // cannot donate the array type.
        return;
      }
      new_result_id = GetFuzzerContext()->GetFreshId();
      ApplyTransformation(TransformationAddTypeArray(
          new_result_id, original_id_to_donated_id->at(component_type_id),
          original_id_to_donated_id->at(
              type_or_value.GetSingleWordInOperand(1))));
    } break;
    case SpvOpTypeRuntimeArray: {
      // A runtime array is allowed as the final member of an SSBO.  During
      // donation we turn runtime arrays into fixed-size arrays.  For dead
      // code donations this is OK because the array is never indexed into at
      // runtime, so it does not matter what its size is.  For live-safe code,
      // all accesses are made in-bounds, so this is also OK.
      //
      // The special OpArrayLength instruction, which works on runtime arrays,
      // is rewritten to yield the fixed length that is used for the array.

      uint32_t component_type_id = type_or_value.GetSingleWordInOperand(0);
      if (!original_id_to_donated_id->count(component_type_id)) {
        // We did not donate the component type of this runtime array type, so
        // we cannot donate it as a fixed-size array.
        return;
      }
      new_result_id = GetFuzzerContext()->GetFreshId();
      ApplyTransformation(TransformationAddTypeArray(
          new_result_id, original_id_to_donated_id->at(component_type_id),
          FindOrCreateIntegerConstant(
              {GetFuzzerContext()->GetRandomSizeForNewArray()}, 32, false,
              false)));
    } break;
    case SpvOpTypeStruct: {
      // Similar to SpvOpTypeArray.
      std::vector<uint32_t> member_type_ids;
      for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
        auto component_type_id = type_or_value.GetSingleWordInOperand(i);
        if (!original_id_to_donated_id->count(component_type_id)) {
          // We did not donate every member type for this struct type, so we
          // cannot donate the struct type.
          return;
        }
        member_type_ids.push_back(
            original_id_to_donated_id->at(component_type_id));
      }
      new_result_id = GetFuzzerContext()->GetFreshId();
      ApplyTransformation(
          TransformationAddTypeStruct(new_result_id, member_type_ids));
    } break;
    case SpvOpTypePointer: {
      // Similar to SpvOpTypeArray.
      uint32_t pointee_type_id = type_or_value.GetSingleWordInOperand(1);
      if (!original_id_to_donated_id->count(pointee_type_id)) {
        // We did not donate the pointee type for this pointer type, so we
        // cannot donate the pointer type.
        return;
      }
      new_result_id = GetFuzzerContext()->GetFreshId();
      ApplyTransformation(TransformationAddTypePointer(
          new_result_id,
          AdaptStorageClass(static_cast<SpvStorageClass>(
              type_or_value.GetSingleWordInOperand(0))),
          original_id_to_donated_id->at(pointee_type_id)));
    } break;
    case SpvOpTypeFunction: {
      // It is not OK to have multiple function types that use identical ids
      // for their return and parameter types.  We thus go through all
      // existing function types to look for a match.  We do not use the
      // type manager here because we want to regard two function types that
      // are structurally identical but that differ with respect to the
      // actual ids used for pointer types as different.
      //
      // Example:
      //
      // %1 = OpTypeVoid
      // %2 = OpTypeInt 32 0
      // %3 = OpTypePointer Function %2
      // %4 = OpTypePointer Function %2
      // %5 = OpTypeFunction %1 %3
      // %6 = OpTypeFunction %1 %4
      //
      // We regard %5 and %6 as distinct function types here, even though
      // they both have the form "uint32* -> void"

      std::vector<uint32_t> return_and_parameter_types;
      for (uint32_t i = 0; i < type_or_value.NumInOperands(); i++) {
        uint32_t return_or_parameter_type =
            type_or_value.GetSingleWordInOperand(i);
        if (!original_id_to_donated_id->count(return_or_parameter_type)) {
          // We did not donate every return/parameter type for this function
          // type, so we cannot donate the function type.
          return;
        }
        return_and_parameter_types.push_back(
            original_id_to_donated_id->at(return_or_parameter_type));
      }
      uint32_t existing_function_id = fuzzerutil::FindFunctionType(
          GetIRContext(), return_and_parameter_types);
      if (existing_function_id) {
        new_result_id = existing_function_id;
      } else {
        // No match was found, so add a remapped version of the function type
        // to the module, with a fresh id.
        new_result_id = GetFuzzerContext()->GetFreshId();
        std::vector<uint32_t> argument_type_ids;
        for (uint32_t i = 1; i < type_or_value.NumInOperands(); i++) {
          argument_type_ids.push_back(original_id_to_donated_id->at(
              type_or_value.GetSingleWordInOperand(i)));
        }
        ApplyTransformation(TransformationAddTypeFunction(
            new_result_id,
            original_id_to_donated_id->at(
                type_or_value.GetSingleWordInOperand(0)),
            argument_type_ids));
      }
    } break;
    case SpvOpSpecConstantOp: {
      new_result_id = GetFuzzerContext()->GetFreshId();
      auto type_id = original_id_to_donated_id->at(type_or_value.type_id());
      auto opcode = static_cast<SpvOp>(type_or_value.GetSingleWordInOperand(0));

      // Make sure we take into account |original_id_to_donated_id| when
      // computing operands for OpSpecConstantOp.
      opt::Instruction::OperandList operands;
      for (uint32_t i = 1; i < type_or_value.NumInOperands(); ++i) {
        const auto& operand = type_or_value.GetInOperand(i);
        auto data =
            operand.type == SPV_OPERAND_TYPE_ID
                ? opt::Operand::OperandData{original_id_to_donated_id->at(
                      operand.words[0])}
                : operand.words;

        operands.push_back({operand.type, std::move(data)});
      }

      ApplyTransformation(TransformationAddSpecConstantOp(
          new_result_id, type_id, opcode, std::move(operands)));
    } break;
    case SpvOpSpecConstantTrue:
    case SpvOpSpecConstantFalse:
    case SpvOpConstantTrue:
    case SpvOpConstantFalse: {
      // It is OK to have duplicate definitions of True and False, so add
      // these to the module, using a remapped Bool type.
      new_result_id = GetFuzzerContext()->GetFreshId();
      auto value = type_or_value.opcode() == SpvOpConstantTrue ||
                   type_or_value.opcode() == SpvOpSpecConstantTrue;
      ApplyTransformation(
          TransformationAddConstantBoolean(new_result_id, value, false));
    } break;
    case SpvOpSpecConstant:
    case SpvOpConstant: {
      // It is OK to have duplicate constant definitions, so add this to the
      // module using a remapped result type.
      new_result_id = GetFuzzerContext()->GetFreshId();
      std::vector<uint32_t> data_words;
      type_or_value.ForEachInOperand([&data_words](const uint32_t* in_operand) {
        data_words.push_back(*in_operand);
      });
      ApplyTransformation(TransformationAddConstantScalar(
          new_result_id, original_id_to_donated_id->at(type_or_value.type_id()),
          data_words, false));
    } break;
    case SpvOpSpecConstantComposite:
    case SpvOpConstantComposite: {
      assert(original_id_to_donated_id->count(type_or_value.type_id()) &&
             "Composite types for which it is possible to create a constant "
             "should have been donated.");

      // It is OK to have duplicate constant composite definitions, so add
      // this to the module using remapped versions of all consituent ids and
      // the result type.
      new_result_id = GetFuzzerContext()->GetFreshId();
      std::vector<uint32_t> constituent_ids;
      type_or_value.ForEachInId([&constituent_ids, &original_id_to_donated_id](
                                    const uint32_t* constituent_id) {
        assert(original_id_to_donated_id->count(*constituent_id) &&
               "The constants used to construct this composite should "
               "have been donated.");
        constituent_ids.push_back(
            original_id_to_donated_id->at(*constituent_id));
      });
      ApplyTransformation(TransformationAddConstantComposite(
          new_result_id, original_id_to_donated_id->at(type_or_value.type_id()),
          constituent_ids, false));
    } break;
    case SpvOpConstantNull: {
      if (!original_id_to_donated_id->count(type_or_value.type_id())) {
        // We did not donate the type associated with this null constant, so
        // we cannot donate the null constant.
        return;
      }

      // It is fine to have multiple OpConstantNull instructions of the same
      // type, so we just add this to the recipient module.
      new_result_id = GetFuzzerContext()->GetFreshId();
      ApplyTransformation(TransformationAddConstantNull(
          new_result_id,
          original_id_to_donated_id->at(type_or_value.type_id())));
    } break;
    case SpvOpVariable: {
      if (!original_id_to_donated_id->count(type_or_value.type_id())) {
        // We did not donate the pointer type associated with this variable,
        // so we cannot donate the variable.
        return;
      }

      // This is a global variable that could have one of various storage
      // classes.  However, we change all global variable pointer storage
      // classes (such as Uniform, Input and Output) to private when donating
      // pointer types, with the exception of the Workgroup storage class.
      //
      // Thus this variable's pointer type is guaranteed to have storage class
      // Private or Workgroup.
      //
      // We add a global variable with either Private or Workgroup storage
      // class, using remapped versions of the result type and initializer ids
      // for the global variable in the donor.
      //
      // We regard the added variable as having an irrelevant value.  This
      // means that future passes can add stores to the variable in any
      // way they wish, and pass them as pointer parameters to functions
      // without worrying about whether their data might get modified.
      new_result_id = GetFuzzerContext()->GetFreshId();
      uint32_t remapped_pointer_type =
          original_id_to_donated_id->at(type_or_value.type_id());
      uint32_t initializer_id;
      SpvStorageClass storage_class =
          static_cast<SpvStorageClass>(type_or_value.GetSingleWordInOperand(
              0)) == SpvStorageClassWorkgroup
              ? SpvStorageClassWorkgroup
              : SpvStorageClassPrivate;
      if (type_or_value.NumInOperands() == 1) {
        // The variable did not have an initializer.  Initialize it to zero
        // if it has Private storage class (to limit problems associated with
        // uninitialized data), and leave it uninitialized if it has Workgroup
        // storage class (as Workgroup variables cannot have initializers).

        // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3275): we
        //  could initialize Workgroup variables at the start of an entry
        //  point, and should do so if their uninitialized nature proves
        //  problematic.
        initializer_id = storage_class == SpvStorageClassWorkgroup
                             ? 0
                             : FindOrCreateZeroConstant(
                                   fuzzerutil::GetPointeeTypeIdFromPointerType(
                                       GetIRContext(), remapped_pointer_type),
                                   false);
      } else {
        // The variable already had an initializer; use its remapped id.
        initializer_id = original_id_to_donated_id->at(
            type_or_value.GetSingleWordInOperand(1));
      }
      ApplyTransformation(
          TransformationAddGlobalVariable(new_result_id, remapped_pointer_type,
                                          storage_class, initializer_id, true));
    } break;
    case SpvOpUndef: {
      if (!original_id_to_donated_id->count(type_or_value.type_id())) {
        // We did not donate the type associated with this undef, so we cannot
        // donate the undef.
        return;
      }

      // It is fine to have multiple Undef instructions of the same type, so
      // we just add this to the recipient module.
      new_result_id = GetFuzzerContext()->GetFreshId();
      ApplyTransformation(TransformationAddGlobalUndef(
          new_result_id,
          original_id_to_donated_id->at(type_or_value.type_id())));
    } break;
    default: {
      assert(0 && "Unknown type/value.");
      new_result_id = 0;
    } break;
  }

  // Update the id mapping to associate the instruction's result id with its
  // corresponding id in the recipient.
  original_id_to_donated_id->insert({type_or_value.result_id(), new_result_id});
}

void FuzzerPassDonateModules::HandleFunctions(
    opt::IRContext* donor_ir_context,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id,
    bool make_livesafe) {
  // Get the ids of functions in the donor module, topologically sorted
  // according to the donor's call graph.
  auto topological_order =
      CallGraph(donor_ir_context).GetFunctionsInTopologicalOrder();

  // Donate the functions in reverse topological order.  This ensures that a
  // function gets donated before any function that depends on it.  This allows
  // donation of the functions to be separated into a number of transformations,
  // each adding one function, such that every prefix of transformations leaves
  // the module valid.
  for (auto function_id = topological_order.rbegin();
       function_id != topological_order.rend(); ++function_id) {
    // Find the function to be donated.
    opt::Function* function_to_donate = nullptr;
    for (auto& function : *donor_ir_context->module()) {
      if (function.result_id() == *function_id) {
        function_to_donate = &function;
        break;
      }
    }
    assert(function_to_donate && "Function to be donated was not found.");

    if (!original_id_to_donated_id->count(
            function_to_donate->DefInst().GetSingleWordInOperand(1))) {
      // We were not able to donate this function's type, so we cannot donate
      // the function.
      continue;
    }

    // We will collect up protobuf messages representing the donor function's
    // instructions here, and use them to create an AddFunction transformation.
    std::vector<protobufs::Instruction> donated_instructions;

    // This set tracks the ids of those instructions for which donation was
    // completely skipped: neither the instruction nor a substitute for it was
    // donated.
    std::set<uint32_t> skipped_instructions;

    // Consider every instruction of the donor function.
    function_to_donate->ForEachInst(
        [this, &donated_instructions, donor_ir_context,
         &original_id_to_donated_id,
         &skipped_instructions](const opt::Instruction* instruction) {
          if (instruction->opcode() == SpvOpArrayLength) {
            // We treat OpArrayLength specially.
            HandleOpArrayLength(*instruction, original_id_to_donated_id,
                                &donated_instructions);
          } else if (!CanDonateInstruction(donor_ir_context, *instruction,
                                           *original_id_to_donated_id,
                                           skipped_instructions)) {
            // This is an instruction that we cannot directly donate.
            HandleDifficultInstruction(*instruction, original_id_to_donated_id,
                                       &donated_instructions,
                                       &skipped_instructions);
          } else {
            PrepareInstructionForDonation(*instruction, donor_ir_context,
                                          original_id_to_donated_id,
                                          &donated_instructions);
          }
        });

    // If |make_livesafe| is true, try to add the function in a livesafe manner.
    // Otherwise (if |make_lifesafe| is false or an attempt to make the function
    // livesafe has failed), add the function in a non-livesafe manner.
    if (!make_livesafe ||
        !MaybeAddLivesafeFunction(*function_to_donate, donor_ir_context,
                                  *original_id_to_donated_id,
                                  donated_instructions)) {
      ApplyTransformation(TransformationAddFunction(donated_instructions));
    }
  }
}

bool FuzzerPassDonateModules::CanDonateInstruction(
    opt::IRContext* donor_ir_context, const opt::Instruction& instruction,
    const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
    const std::set<uint32_t>& skipped_instructions) const {
  if (instruction.type_id() &&
      !original_id_to_donated_id.count(instruction.type_id())) {
    // We could not donate the result type of this instruction, so we cannot
    // donate the instruction.
    return false;
  }

  // Now consider instructions we specifically want to skip because we do not
  // yet support them.
  switch (instruction.opcode()) {
    case SpvOpAtomicLoad:
    case SpvOpAtomicStore:
    case SpvOpAtomicExchange:
    case SpvOpAtomicCompareExchange:
    case SpvOpAtomicCompareExchangeWeak:
    case SpvOpAtomicIIncrement:
    case SpvOpAtomicIDecrement:
    case SpvOpAtomicIAdd:
    case SpvOpAtomicISub:
    case SpvOpAtomicSMin:
    case SpvOpAtomicUMin:
    case SpvOpAtomicSMax:
    case SpvOpAtomicUMax:
    case SpvOpAtomicAnd:
    case SpvOpAtomicOr:
    case SpvOpAtomicXor:
      // We conservatively ignore all atomic instructions at present.
      // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3276): Consider
      //  being less conservative here.
    case SpvOpImageSampleImplicitLod:
    case SpvOpImageSampleExplicitLod:
    case SpvOpImageSampleDrefImplicitLod:
    case SpvOpImageSampleDrefExplicitLod:
    case SpvOpImageSampleProjImplicitLod:
    case SpvOpImageSampleProjExplicitLod:
    case SpvOpImageSampleProjDrefImplicitLod:
    case SpvOpImageSampleProjDrefExplicitLod:
    case SpvOpImageFetch:
    case SpvOpImageGather:
    case SpvOpImageDrefGather:
    case SpvOpImageRead:
    case SpvOpImageWrite:
    case SpvOpImageSparseSampleImplicitLod:
    case SpvOpImageSparseSampleExplicitLod:
    case SpvOpImageSparseSampleDrefImplicitLod:
    case SpvOpImageSparseSampleDrefExplicitLod:
    case SpvOpImageSparseSampleProjImplicitLod:
    case SpvOpImageSparseSampleProjExplicitLod:
    case SpvOpImageSparseSampleProjDrefImplicitLod:
    case SpvOpImageSparseSampleProjDrefExplicitLod:
    case SpvOpImageSparseFetch:
    case SpvOpImageSparseGather:
    case SpvOpImageSparseDrefGather:
    case SpvOpImageSparseRead:
    case SpvOpImageSampleFootprintNV:
    case SpvOpImage:
    case SpvOpImageQueryFormat:
    case SpvOpImageQueryLevels:
    case SpvOpImageQueryLod:
    case SpvOpImageQueryOrder:
    case SpvOpImageQuerySamples:
    case SpvOpImageQuerySize:
    case SpvOpImageQuerySizeLod:
    case SpvOpSampledImage:
      // We ignore all instructions related to accessing images, since we do not
      // donate images.
      return false;
    case SpvOpLoad:
      switch (donor_ir_context->get_def_use_mgr()
                  ->GetDef(instruction.type_id())
                  ->opcode()) {
        case SpvOpTypeImage:
        case SpvOpTypeSampledImage:
        case SpvOpTypeSampler:
          // Again, we ignore instructions that relate to accessing images.
          return false;
        default:
          break;
      }
    default:
      break;
  }

  // Examine each id input operand to the instruction.  If it turns out that we
  // have skipped any of these operands then we cannot donate the instruction.
  bool result = true;
  instruction.WhileEachInId(
      [donor_ir_context, &original_id_to_donated_id, &result,
       &skipped_instructions](const uint32_t* in_id) -> bool {
        if (!original_id_to_donated_id.count(*in_id)) {
          // We do not have a mapped result id for this id operand.  That either
          // means that it is a forward reference (which is OK), that we skipped
          // the instruction that generated it (which is not OK), or that it is
          // the id of a function or global value that we did not donate (which
          // is not OK).  We check for the latter two cases.
          if (skipped_instructions.count(*in_id) ||
              // A function or global value does not have an associated basic
              // block.
              !donor_ir_context->get_instr_block(*in_id)) {
            result = false;
            return false;
          }
        }
        return true;
      });
  return result;
}

bool FuzzerPassDonateModules::IsBasicType(
    const opt::Instruction& instruction) const {
  switch (instruction.opcode()) {
    case SpvOpTypeArray:
    case SpvOpTypeBool:
    case SpvOpTypeFloat:
    case SpvOpTypeInt:
    case SpvOpTypeMatrix:
    case SpvOpTypeStruct:
    case SpvOpTypeVector:
      return true;
    default:
      return false;
  }
}

void FuzzerPassDonateModules::HandleOpArrayLength(
    const opt::Instruction& instruction,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id,
    std::vector<protobufs::Instruction>* donated_instructions) const {
  assert(instruction.opcode() == SpvOpArrayLength &&
         "Precondition: instruction must be OpArrayLength.");
  uint32_t donated_variable_id =
      original_id_to_donated_id->at(instruction.GetSingleWordInOperand(0));
  auto donated_variable_instruction =
      GetIRContext()->get_def_use_mgr()->GetDef(donated_variable_id);
  auto pointer_to_struct_instruction =
      GetIRContext()->get_def_use_mgr()->GetDef(
          donated_variable_instruction->type_id());
  assert(pointer_to_struct_instruction->opcode() == SpvOpTypePointer &&
         "Type of variable must be pointer.");
  auto donated_struct_type_instruction =
      GetIRContext()->get_def_use_mgr()->GetDef(
          pointer_to_struct_instruction->GetSingleWordInOperand(1));
  assert(donated_struct_type_instruction->opcode() == SpvOpTypeStruct &&
         "Pointee type of pointer used by OpArrayLength must be struct.");
  assert(donated_struct_type_instruction->NumInOperands() ==
             instruction.GetSingleWordInOperand(1) + 1 &&
         "OpArrayLength must refer to the final member of the given "
         "struct.");
  uint32_t fixed_size_array_type_id =
      donated_struct_type_instruction->GetSingleWordInOperand(
          donated_struct_type_instruction->NumInOperands() - 1);
  auto fixed_size_array_type_instruction =
      GetIRContext()->get_def_use_mgr()->GetDef(fixed_size_array_type_id);
  assert(fixed_size_array_type_instruction->opcode() == SpvOpTypeArray &&
         "The donated array type must be fixed-size.");
  auto array_size_id =
      fixed_size_array_type_instruction->GetSingleWordInOperand(1);

  if (instruction.result_id() &&
      !original_id_to_donated_id->count(instruction.result_id())) {
    original_id_to_donated_id->insert(
        {instruction.result_id(), GetFuzzerContext()->GetFreshId()});
  }

  donated_instructions->push_back(MakeInstructionMessage(
      SpvOpCopyObject, original_id_to_donated_id->at(instruction.type_id()),
      original_id_to_donated_id->at(instruction.result_id()),
      opt::Instruction::OperandList({{SPV_OPERAND_TYPE_ID, {array_size_id}}})));
}

void FuzzerPassDonateModules::HandleDifficultInstruction(
    const opt::Instruction& instruction,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id,
    std::vector<protobufs::Instruction>* donated_instructions,
    std::set<uint32_t>* skipped_instructions) {
  if (!instruction.result_id()) {
    // It does not generate a result id, so it can be ignored.
    return;
  }
  if (!original_id_to_donated_id->count(instruction.type_id())) {
    // We cannot handle this instruction's result type, so we need to skip it
    // all together.
    skipped_instructions->insert(instruction.result_id());
    return;
  }

  // We now attempt to replace the instruction with an OpCopyObject.
  // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3278): We could do
  //  something more refined here - we could check which operands to the
  //  instruction could not be donated and replace those operands with
  //  references to other ids (such as constants), so that we still get an
  //  instruction with the opcode and easy-to-handle operands of the donor
  //  instruction.
  auto remapped_type_id = original_id_to_donated_id->at(instruction.type_id());
  if (!IsBasicType(
          *GetIRContext()->get_def_use_mgr()->GetDef(remapped_type_id))) {
    // The instruction has a non-basic result type, so we cannot replace it with
    // an object copy of a constant.  We thus skip it completely.
    // TODO(https://github.com/KhronosGroup/SPIRV-Tools/issues/3279): We could
    //  instead look for an available id of the right type and generate an
    //  OpCopyObject of that id.
    skipped_instructions->insert(instruction.result_id());
    return;
  }

  // We are going to add an OpCopyObject instruction.  Add a mapping for the
  // result id of the original instruction if does not already exist (it may
  // exist in the case that it has been forward-referenced).
  if (!original_id_to_donated_id->count(instruction.result_id())) {
    original_id_to_donated_id->insert(
        {instruction.result_id(), GetFuzzerContext()->GetFreshId()});
  }

  // We find or add a zero constant to the receiving module for the type in
  // question, and add an OpCopyObject instruction that copies this zero.
  //
  // We mark the constant as irrelevant so that we can replace it with a
  // more interesting value later.
  auto zero_constant = FindOrCreateZeroConstant(remapped_type_id, true);
  donated_instructions->push_back(MakeInstructionMessage(
      SpvOpCopyObject, remapped_type_id,
      original_id_to_donated_id->at(instruction.result_id()),
      opt::Instruction::OperandList({{SPV_OPERAND_TYPE_ID, {zero_constant}}})));
}

void FuzzerPassDonateModules::PrepareInstructionForDonation(
    const opt::Instruction& instruction, opt::IRContext* donor_ir_context,
    std::map<uint32_t, uint32_t>* original_id_to_donated_id,
    std::vector<protobufs::Instruction>* donated_instructions) {
  // Get the instruction's input operands into donation-ready form,
  // remapping any id uses in the process.
  opt::Instruction::OperandList input_operands;

  // Consider each input operand in turn.
  for (uint32_t in_operand_index = 0;
       in_operand_index < instruction.NumInOperands(); in_operand_index++) {
    std::vector<uint32_t> operand_data;
    const opt::Operand& in_operand = instruction.GetInOperand(in_operand_index);
    // Check whether this operand is an id.
    if (spvIsIdType(in_operand.type)) {
      // This is an id operand - it consists of a single word of data,
      // which needs to be remapped so that it is replaced with the
      // donated form of the id.
      auto operand_id = in_operand.words[0];
      if (!original_id_to_donated_id->count(operand_id)) {
        // This is a forward reference.  We will choose a corresponding
        // donor id for the referenced id and update the mapping to
        // reflect it.

        // Keep release compilers happy because |donor_ir_context| is only used
        // in this assertion.
        (void)(donor_ir_context);
        assert((donor_ir_context->get_def_use_mgr()
                        ->GetDef(operand_id)
                        ->opcode() == SpvOpLabel ||
                instruction.opcode() == SpvOpPhi) &&
               "Unsupported forward reference.");
        original_id_to_donated_id->insert(
            {operand_id, GetFuzzerContext()->GetFreshId()});
      }
      operand_data.push_back(original_id_to_donated_id->at(operand_id));
    } else {
      // For non-id operands, we just add each of the data words.
      for (auto word : in_operand.words) {
        operand_data.push_back(word);
      }
    }
    input_operands.push_back({in_operand.type, operand_data});
  }

  if (instruction.opcode() == SpvOpVariable &&
      instruction.NumInOperands() == 1) {
    // This is an uninitialized local variable.  Initialize it to zero.
    input_operands.push_back(
        {SPV_OPERAND_TYPE_ID,
         {FindOrCreateZeroConstant(
             fuzzerutil::GetPointeeTypeIdFromPointerType(
                 GetIRContext(),
                 original_id_to_donated_id->at(instruction.type_id())),
             false)}});
  }

  if (instruction.result_id() &&
      !original_id_to_donated_id->count(instruction.result_id())) {
    original_id_to_donated_id->insert(
        {instruction.result_id(), GetFuzzerContext()->GetFreshId()});
  }

  // Remap the result type and result id (if present) of the
  // instruction, and turn it into a protobuf message.
  donated_instructions->push_back(MakeInstructionMessage(
      instruction.opcode(),
      instruction.type_id()
          ? original_id_to_donated_id->at(instruction.type_id())
          : 0,
      instruction.result_id()
          ? original_id_to_donated_id->at(instruction.result_id())
          : 0,
      input_operands));
}

bool FuzzerPassDonateModules::CreateLoopLimiterInfo(
    opt::IRContext* donor_ir_context, const opt::BasicBlock& loop_header,
    const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
    protobufs::LoopLimiterInfo* out) {
  assert(loop_header.IsLoopHeader() && "|loop_header| is not a loop header");

  // Grab the loop header's id, mapped to its donated value.
  out->set_loop_header_id(original_id_to_donated_id.at(loop_header.id()));

  // Get fresh ids that will be used to load the loop limiter, increment
  // it, compare it with the loop limit, and an id for a new block that
  // will contain the loop's original terminator.
  out->set_load_id(GetFuzzerContext()->GetFreshId());
  out->set_increment_id(GetFuzzerContext()->GetFreshId());
  out->set_compare_id(GetFuzzerContext()->GetFreshId());
  out->set_logical_op_id(GetFuzzerContext()->GetFreshId());

  // We are creating a branch from the back-edge block to the merge block. Thus,
  // if merge block has any OpPhi instructions, we might need to adjust
  // them.

  // Note that the loop might have an unreachable back-edge block. This means
  // that the loop can't iterate, so we don't need to adjust anything.
  const auto back_edge_block_id = TransformationAddFunction::GetBackEdgeBlockId(
      donor_ir_context, loop_header.id());
  if (!back_edge_block_id) {
    return true;
  }

  auto* back_edge_block = donor_ir_context->cfg()->block(back_edge_block_id);
  assert(back_edge_block && "|back_edge_block_id| is invalid");

  const auto* merge_block =
      donor_ir_context->cfg()->block(loop_header.MergeBlockId());
  assert(merge_block && "Loop header has invalid merge block id");

  // We don't need to adjust anything if there is already a branch from
  // the back-edge block to the merge block.
  if (back_edge_block->IsSuccessor(merge_block)) {
    return true;
  }

  // Adjust OpPhi instructions in the |merge_block|.
  for (const auto& inst : *merge_block) {
    if (inst.opcode() != SpvOpPhi) {
      break;
    }

    // There is no simple way to ensure that a chosen operand for the OpPhi
    // instruction will never cause any problems (e.g. if we choose an
    // integer id, it might have a zero value when we branch from the back
    // edge block. This might cause a division by 0 later in the function.).
    // Thus, we ignore possible problems and proceed as follows:
    // - if any of the existing OpPhi operands dominates the back-edge
    //   block - use it
    // - if OpPhi has a basic type (see IsBasicType method) - create
    //   a zero constant
    // - otherwise, we can't add a livesafe function.
    uint32_t suitable_operand_id = 0;
    for (uint32_t i = 0; i < inst.NumInOperands(); i += 2) {
      auto dependency_inst_id = inst.GetSingleWordInOperand(i);

      if (fuzzerutil::IdIsAvailableBeforeInstruction(
              donor_ir_context, back_edge_block->terminator(),
              dependency_inst_id)) {
        suitable_operand_id = original_id_to_donated_id.at(dependency_inst_id);
        break;
      }
    }

    if (suitable_operand_id == 0 &&
        IsBasicType(
            *donor_ir_context->get_def_use_mgr()->GetDef(inst.type_id()))) {
      // We mark this constant as irrelevant so that we can replace it
      // with more interesting value later.
      suitable_operand_id = FindOrCreateZeroConstant(
          original_id_to_donated_id.at(inst.type_id()), true);
    }

    if (suitable_operand_id == 0) {
      return false;
    }

    out->add_phi_id(suitable_operand_id);
  }

  return true;
}

bool FuzzerPassDonateModules::MaybeAddLivesafeFunction(
    const opt::Function& function_to_donate, opt::IRContext* donor_ir_context,
    const std::map<uint32_t, uint32_t>& original_id_to_donated_id,
    const std::vector<protobufs::Instruction>& donated_instructions) {
  // Various types and constants must be in place for a function to be made
  // live-safe.  Add them if not already present.
  FindOrCreateBoolType();  // Needed for comparisons
  FindOrCreatePointerToIntegerType(
      32, false, SpvStorageClassFunction);  // Needed for adding loop limiters
  FindOrCreateIntegerConstant({0}, 32, false,
                              false);  // Needed for initializing loop limiters
  FindOrCreateIntegerConstant({1}, 32, false,
                              false);  // Needed for incrementing loop limiters

  // Get a fresh id for the variable that will be used as a loop limiter.
  const uint32_t loop_limiter_variable_id = GetFuzzerContext()->GetFreshId();
  // Choose a random loop limit, and add the required constant to the
  // module if not already there.
  const uint32_t loop_limit = FindOrCreateIntegerConstant(
      {GetFuzzerContext()->GetRandomLoopLimit()}, 32, false, false);

  // Consider every loop header in the function to donate, and create a
  // structure capturing the ids to be used for manipulating the loop
  // limiter each time the loop is iterated.
  std::vector<protobufs::LoopLimiterInfo> loop_limiters;
  for (auto& block : function_to_donate) {
    if (block.IsLoopHeader()) {
      protobufs::LoopLimiterInfo loop_limiter;

      if (!CreateLoopLimiterInfo(donor_ir_context, block,
                                 original_id_to_donated_id, &loop_limiter)) {
        return false;
      }

      loop_limiters.emplace_back(std::move(loop_limiter));
    }
  }

  // Consider every access chain in the function to donate, and create a
  // structure containing the ids necessary to clamp the access chain
  // indices to be in-bounds.
  std::vector<protobufs::AccessChainClampingInfo> access_chain_clamping_info;
  for (auto& block : function_to_donate) {
    for (auto& inst : block) {
      switch (inst.opcode()) {
        case SpvOpAccessChain:
        case SpvOpInBoundsAccessChain: {
          protobufs::AccessChainClampingInfo clamping_info;
          clamping_info.set_access_chain_id(
              original_id_to_donated_id.at(inst.result_id()));

          auto base_object = donor_ir_context->get_def_use_mgr()->GetDef(
              inst.GetSingleWordInOperand(0));
          assert(base_object && "The base object must exist.");
          auto pointer_type = donor_ir_context->get_def_use_mgr()->GetDef(
              base_object->type_id());
          assert(pointer_type && pointer_type->opcode() == SpvOpTypePointer &&
                 "The base object must have pointer type.");

          auto should_be_composite_type =
              donor_ir_context->get_def_use_mgr()->GetDef(
                  pointer_type->GetSingleWordInOperand(1));

          // Walk the access chain, creating fresh ids to facilitate
          // clamping each index.  For simplicity we do this for every
          // index, even though constant indices will not end up being
          // clamped.
          for (uint32_t index = 1; index < inst.NumInOperands(); index++) {
            auto compare_and_select_ids =
                clamping_info.add_compare_and_select_ids();
            compare_and_select_ids->set_first(GetFuzzerContext()->GetFreshId());
            compare_and_select_ids->set_second(
                GetFuzzerContext()->GetFreshId());

            // Get the bound for the component being indexed into.
            uint32_t bound;
            if (should_be_composite_type->opcode() == SpvOpTypeRuntimeArray) {
              // The donor is indexing into a runtime array.  We do not
              // donate runtime arrays.  Instead, we donate a corresponding
              // fixed-size array for every runtime array.  We should thus
              // find that donor composite type's result id maps to a fixed-
              // size array.
              auto fixed_size_array_type =
                  GetIRContext()->get_def_use_mgr()->GetDef(
                      original_id_to_donated_id.at(
                          should_be_composite_type->result_id()));
              assert(fixed_size_array_type->opcode() == SpvOpTypeArray &&
                     "A runtime array type in the donor should have been "
                     "replaced by a fixed-sized array in the recipient.");
              // The size of this fixed-size array is a suitable bound.
              bound = fuzzerutil::GetBoundForCompositeIndex(
                  *fixed_size_array_type, GetIRContext());
            } else {
              bound = fuzzerutil::GetBoundForCompositeIndex(
                  *should_be_composite_type, donor_ir_context);
            }
            const uint32_t index_id = inst.GetSingleWordInOperand(index);
            auto index_inst =
                donor_ir_context->get_def_use_mgr()->GetDef(index_id);
            auto index_type_inst = donor_ir_context->get_def_use_mgr()->GetDef(
                index_inst->type_id());
            assert(index_type_inst->opcode() == SpvOpTypeInt);
            opt::analysis::Integer* index_int_type =
                donor_ir_context->get_type_mgr()
                    ->GetType(index_type_inst->result_id())
                    ->AsInteger();
            if (index_inst->opcode() != SpvOpConstant) {
              // We will have to clamp this index, so we need a constant
              // whose value is one less than the bound, to compare
              // against and to use as the clamped value.
              FindOrCreateIntegerConstant({bound - 1}, 32,
                                          index_int_type->IsSigned(), false);
            }
            should_be_composite_type =
                TransformationAddFunction::FollowCompositeIndex(
                    donor_ir_context, *should_be_composite_type, index_id);
          }
          access_chain_clamping_info.push_back(clamping_info);
          break;
        }
        default:
          break;
      }
    }
  }

  // If |function_to_donate| has non-void return type and contains an
  // OpKill/OpUnreachable instruction, then a value is needed in order to turn
  // these into instructions of the form OpReturnValue %value_id.
  uint32_t kill_unreachable_return_value_id = 0;
  auto function_return_type_inst =
      donor_ir_context->get_def_use_mgr()->GetDef(function_to_donate.type_id());
  if (function_return_type_inst->opcode() != SpvOpTypeVoid &&
      fuzzerutil::FunctionContainsOpKillOrUnreachable(function_to_donate)) {
    kill_unreachable_return_value_id = FindOrCreateZeroConstant(
        original_id_to_donated_id.at(function_return_type_inst->result_id()),
        false);
  }

  // Try to add the function in a livesafe manner. This may fail due to edge
  // cases, e.g. where adding loop limiters changes dominance such that the
  // module becomes invalid. It would be ideal to handle all such edge cases,
  // but as they are rare it is more pragmatic to bail out of making the
  // function livesafe if the transformation's precondition fails to hold.
  return MaybeApplyTransformation(TransformationAddFunction(
      donated_instructions, loop_limiter_variable_id, loop_limit, loop_limiters,
      kill_unreachable_return_value_id, access_chain_clamping_info));
}

}  // namespace fuzz
}  // namespace spvtools