aboutsummaryrefslogtreecommitdiff
path: root/source/reduce/structured_loop_to_selection_reduction_opportunity.cpp
blob: 0c004439f74268f0230408fcf3e189fc34442867 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright (c) 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "source/reduce/structured_loop_to_selection_reduction_opportunity.h"

#include "source/opt/aggressive_dead_code_elim_pass.h"
#include "source/opt/ir_context.h"
#include "source/reduce/reduction_util.h"

namespace spvtools {
namespace reduce {

namespace {
const uint32_t kMergeNodeIndex = 0;
}  // namespace

bool StructuredLoopToSelectionReductionOpportunity::PreconditionHolds() {
  // Is the loop header reachable?
  return loop_construct_header_->GetLabel()
      ->context()
      ->GetDominatorAnalysis(enclosing_function_)
      ->IsReachable(loop_construct_header_);
}

void StructuredLoopToSelectionReductionOpportunity::Apply() {
  // Force computation of dominator analysis, CFG and structured CFG analysis
  // before we start to mess with edges in the function.
  context_->GetDominatorAnalysis(enclosing_function_);
  context_->cfg();
  context_->GetStructuredCFGAnalysis();

  // (1) Redirect edges that point to the loop's continue target to their
  // closest merge block.
  RedirectToClosestMergeBlock(loop_construct_header_->ContinueBlockId());

  // (2) Redirect edges that point to the loop's merge block to their closest
  // merge block (which might be that of an enclosing selection, for instance).
  RedirectToClosestMergeBlock(loop_construct_header_->MergeBlockId());

  // (3) Turn the loop construct header into a selection.
  ChangeLoopToSelection();

  // We have made control flow changes that do not preserve the analyses that
  // were performed.
  context_->InvalidateAnalysesExceptFor(
      opt::IRContext::Analysis::kAnalysisNone);

  // (4) By changing CFG edges we may have created scenarios where ids are used
  // without being dominated; we fix instances of this.
  FixNonDominatedIdUses();

  // Invalidate the analyses we just used.
  context_->InvalidateAnalysesExceptFor(
      opt::IRContext::Analysis::kAnalysisNone);
}

void StructuredLoopToSelectionReductionOpportunity::RedirectToClosestMergeBlock(
    uint32_t original_target_id) {
  // Consider every predecessor of the node with respect to which edges should
  // be redirected.
  std::set<uint32_t> already_seen;
  for (auto pred : context_->cfg()->preds(original_target_id)) {
    if (already_seen.find(pred) != already_seen.end()) {
      // We have already handled this predecessor (this scenario can arise if
      // there are multiple edges from a block b to original_target_id).
      continue;
    }
    already_seen.insert(pred);

    if (!context_->GetDominatorAnalysis(enclosing_function_)
             ->IsReachable(pred)) {
      // We do not care about unreachable predecessors (and dominance
      // information, and thus the notion of structured control flow, makes
      // little sense for unreachable blocks).
      continue;
    }
    // Find the merge block of the structured control construct that most
    // tightly encloses the predecessor.
    uint32_t new_merge_target;
    // The structured CFG analysis deliberately does not regard a header as
    // belonging to the structure that it heads. We want it to, so handle this
    // case specially.
    if (context_->cfg()->block(pred)->MergeBlockIdIfAny()) {
      new_merge_target = context_->cfg()->block(pred)->MergeBlockIdIfAny();
    } else {
      new_merge_target = context_->GetStructuredCFGAnalysis()->MergeBlock(pred);
    }
    assert(new_merge_target != pred);

    if (!new_merge_target) {
      // If the loop being transformed is outermost, and the predecessor is
      // part of that loop's continue construct, there will be no such
      // enclosing control construct.  In this case, the continue construct
      // will become unreachable anyway, so it is fine not to redirect the
      // edge.
      continue;
    }

    if (new_merge_target != original_target_id) {
      // Redirect the edge if it doesn't already point to the desired block.
      RedirectEdge(pred, original_target_id, new_merge_target);
    }
  }
}

void StructuredLoopToSelectionReductionOpportunity::RedirectEdge(
    uint32_t source_id, uint32_t original_target_id, uint32_t new_target_id) {
  // Redirect edge source_id->original_target_id to edge
  // source_id->new_target_id, where the blocks involved are all different.
  assert(source_id != original_target_id);
  assert(source_id != new_target_id);
  assert(original_target_id != new_target_id);

  // original_target_id must either be the merge target or continue construct
  // for the loop being operated on.
  assert(original_target_id == loop_construct_header_->MergeBlockId() ||
         original_target_id == loop_construct_header_->ContinueBlockId());

  auto terminator = context_->cfg()->block(source_id)->terminator();

  // Figure out which operands of the terminator need to be considered for
  // redirection.
  std::vector<uint32_t> operand_indices;
  if (terminator->opcode() == SpvOpBranch) {
    operand_indices = {0};
  } else if (terminator->opcode() == SpvOpBranchConditional) {
    operand_indices = {1, 2};
  } else {
    assert(terminator->opcode() == SpvOpSwitch);
    for (uint32_t label_index = 1; label_index < terminator->NumOperands();
         label_index += 2) {
      operand_indices.push_back(label_index);
    }
  }

  // Redirect the relevant operands, asserting that at least one redirection is
  // made.
  bool redirected = false;
  for (auto operand_index : operand_indices) {
    if (terminator->GetSingleWordOperand(operand_index) == original_target_id) {
      terminator->SetOperand(operand_index, {new_target_id});
      redirected = true;
    }
  }
  (void)(redirected);
  assert(redirected);

  // The old and new targets may have phi instructions; these will need to
  // respect the change in edges.
  AdaptPhiInstructionsForRemovedEdge(
      source_id, context_->cfg()->block(original_target_id));
  AdaptPhiInstructionsForAddedEdge(source_id,
                                   context_->cfg()->block(new_target_id));
}

void StructuredLoopToSelectionReductionOpportunity::
    AdaptPhiInstructionsForAddedEdge(uint32_t from_id,
                                     opt::BasicBlock* to_block) {
  to_block->ForEachPhiInst([this, &from_id](opt::Instruction* phi_inst) {
    // Add to the phi operand an (undef, from_id) pair to reflect the added
    // edge.
    auto undef_id = FindOrCreateGlobalUndef(context_, phi_inst->type_id());
    phi_inst->AddOperand(opt::Operand(SPV_OPERAND_TYPE_ID, {undef_id}));
    phi_inst->AddOperand(opt::Operand(SPV_OPERAND_TYPE_ID, {from_id}));
  });
}

void StructuredLoopToSelectionReductionOpportunity::ChangeLoopToSelection() {
  // Change the merge instruction from OpLoopMerge to OpSelectionMerge, with
  // the same merge block.
  auto loop_merge_inst = loop_construct_header_->GetLoopMergeInst();
  auto const loop_merge_block_id =
      loop_merge_inst->GetSingleWordOperand(kMergeNodeIndex);
  loop_merge_inst->SetOpcode(SpvOpSelectionMerge);
  loop_merge_inst->ReplaceOperands(
      {{loop_merge_inst->GetOperand(kMergeNodeIndex).type,
        {loop_merge_block_id}},
       {SPV_OPERAND_TYPE_SELECTION_CONTROL, {SpvSelectionControlMaskNone}}});

  // The loop header either finishes with OpBranch or OpBranchConditional.
  // The latter is fine for a selection.  In the former case we need to turn
  // it into OpBranchConditional.  We use "true" as the condition, and make
  // the "else" branch be the merge block.
  auto terminator = loop_construct_header_->terminator();
  if (terminator->opcode() == SpvOpBranch) {
    opt::analysis::Bool temp;
    const opt::analysis::Bool* bool_type =
        context_->get_type_mgr()->GetRegisteredType(&temp)->AsBool();
    auto const_mgr = context_->get_constant_mgr();
    auto true_const = const_mgr->GetConstant(bool_type, {1});
    auto true_const_result_id =
        const_mgr->GetDefiningInstruction(true_const)->result_id();
    auto original_branch_id = terminator->GetSingleWordOperand(0);
    terminator->SetOpcode(SpvOpBranchConditional);
    terminator->ReplaceOperands({{SPV_OPERAND_TYPE_ID, {true_const_result_id}},
                                 {SPV_OPERAND_TYPE_ID, {original_branch_id}},
                                 {SPV_OPERAND_TYPE_ID, {loop_merge_block_id}}});
    if (original_branch_id != loop_merge_block_id) {
      AdaptPhiInstructionsForAddedEdge(
          loop_construct_header_->id(),
          context_->cfg()->block(loop_merge_block_id));
    }
  }
}

void StructuredLoopToSelectionReductionOpportunity::FixNonDominatedIdUses() {
  // Consider each instruction in the function.
  for (auto& block : *enclosing_function_) {
    for (auto& def : block) {
      if (def.opcode() == SpvOpVariable) {
        // Variables are defined at the start of the function, and can be
        // accessed by all blocks, even by unreachable blocks that have no
        // dominators, so we do not need to worry about them.
        continue;
      }
      context_->get_def_use_mgr()->ForEachUse(&def, [this, &block, &def](
                                                        opt::Instruction* use,
                                                        uint32_t index) {
        // Ignore uses outside of blocks, such as in OpDecorate.
        if (context_->get_instr_block(use) == nullptr) {
          return;
        }
        // If a use is not appropriately dominated by its definition,
        // replace the use with an OpUndef, unless the definition is an
        // access chain, in which case replace it with some (possibly fresh)
        // variable (as we cannot load from / store to OpUndef).
        if (!DefinitionSufficientlyDominatesUse(&def, use, index, block)) {
          if (def.opcode() == SpvOpAccessChain) {
            auto pointer_type =
                context_->get_type_mgr()->GetType(def.type_id())->AsPointer();
            switch (pointer_type->storage_class()) {
              case SpvStorageClassFunction:
                use->SetOperand(
                    index, {FindOrCreateFunctionVariable(
                               context_, enclosing_function_,
                               context_->get_type_mgr()->GetId(pointer_type))});
                break;
              default:
                // TODO(2183) Need to think carefully about whether it makes
                //  sense to add new variables for all storage classes; it's
                //  fine for Private but might not be OK for input/output
                //  storage classes for example.
                use->SetOperand(
                    index, {FindOrCreateGlobalVariable(
                               context_,
                               context_->get_type_mgr()->GetId(pointer_type))});
                break;
                break;
            }
          } else {
            use->SetOperand(index,
                            {FindOrCreateGlobalUndef(context_, def.type_id())});
          }
        }
      });
    }
  }
}

bool StructuredLoopToSelectionReductionOpportunity::
    DefinitionSufficientlyDominatesUse(opt::Instruction* def,
                                       opt::Instruction* use,
                                       uint32_t use_index,
                                       opt::BasicBlock& def_block) {
  if (use->opcode() == SpvOpPhi) {
    // A use in a phi doesn't need to be dominated by its definition, but the
    // associated parent block does need to be dominated by the definition.
    return context_->GetDominatorAnalysis(enclosing_function_)
        ->Dominates(def_block.id(), use->GetSingleWordOperand(use_index + 1));
  }
  // In non-phi cases, a use needs to be dominated by its definition.
  return context_->GetDominatorAnalysis(enclosing_function_)
      ->Dominates(def, use);
}

}  // namespace reduce
}  // namespace spvtools