aboutsummaryrefslogtreecommitdiff
path: root/source/util/small_vector.h
blob: f1762a9f26b4809d162d426b81ecc89fc724e745 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
// Copyright (c) 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef SOURCE_UTIL_SMALL_VECTOR_H_
#define SOURCE_UTIL_SMALL_VECTOR_H_

#include <cassert>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>

#include "source/util/make_unique.h"

namespace spvtools {
namespace utils {

// The |SmallVector| class is intended to be a drop-in replacement for
// |std::vector|.  The difference is in the implementation. A |SmallVector| is
// optimized for when the number of elements in the vector are small.  Small is
// defined by the template parameter |small_size|.
//
// Note that |SmallVector| is not always faster than an |std::vector|, so you
// should experiment with different values for |small_size| and compare to
// using and |std::vector|.
//
// TODO: I have implemented the public member functions from |std::vector| that
// I needed.  If others are needed they should be implemented. Do not implement
// public member functions that are not defined by std::vector.
template <class T, size_t small_size>
class SmallVector {
 public:
  using iterator = T*;
  using const_iterator = const T*;

  SmallVector()
      : size_(0),
        small_data_(reinterpret_cast<T*>(buffer)),
        large_data_(nullptr) {}

  SmallVector(const SmallVector& that) : SmallVector() { *this = that; }

  SmallVector(SmallVector&& that) : SmallVector() { *this = std::move(that); }

  SmallVector(const std::vector<T>& vec) : SmallVector() {
    if (vec.size() > small_size) {
      large_data_ = MakeUnique<std::vector<T>>(vec);
    } else {
      size_ = vec.size();
      for (uint32_t i = 0; i < size_; i++) {
        new (small_data_ + i) T(vec[i]);
      }
    }
  }

  SmallVector(std::vector<T>&& vec) : SmallVector() {
    if (vec.size() > small_size) {
      large_data_ = MakeUnique<std::vector<T>>(std::move(vec));
    } else {
      size_ = vec.size();
      for (uint32_t i = 0; i < size_; i++) {
        new (small_data_ + i) T(std::move(vec[i]));
      }
    }
    vec.clear();
  }

  SmallVector(std::initializer_list<T> init_list) : SmallVector() {
    if (init_list.size() < small_size) {
      for (auto it = init_list.begin(); it != init_list.end(); ++it) {
        new (small_data_ + (size_++)) T(std::move(*it));
      }
    } else {
      large_data_ = MakeUnique<std::vector<T>>(std::move(init_list));
    }
  }

  SmallVector(size_t s, const T& v) : SmallVector() { resize(s, v); }

  virtual ~SmallVector() {
    for (T* p = small_data_; p < small_data_ + size_; ++p) {
      p->~T();
    }
  }

  SmallVector& operator=(const SmallVector& that) {
    assert(small_data_);
    if (that.large_data_) {
      if (large_data_) {
        *large_data_ = *that.large_data_;
      } else {
        large_data_ = MakeUnique<std::vector<T>>(*that.large_data_);
      }
    } else {
      large_data_.reset(nullptr);
      size_t i = 0;
      // Do a copy for any element in |this| that is already constructed.
      for (; i < size_ && i < that.size_; ++i) {
        small_data_[i] = that.small_data_[i];
      }

      if (i >= that.size_) {
        // If the size of |this| becomes smaller after the assignment, then
        // destroy any extra elements.
        for (; i < size_; ++i) {
          small_data_[i].~T();
        }
      } else {
        // If the size of |this| becomes larger after the assignement, copy
        // construct the new elements that are needed.
        for (; i < that.size_; ++i) {
          new (small_data_ + i) T(that.small_data_[i]);
        }
      }
      size_ = that.size_;
    }
    return *this;
  }

  SmallVector& operator=(SmallVector&& that) {
    if (that.large_data_) {
      large_data_.reset(that.large_data_.release());
    } else {
      large_data_.reset(nullptr);
      size_t i = 0;
      // Do a move for any element in |this| that is already constructed.
      for (; i < size_ && i < that.size_; ++i) {
        small_data_[i] = std::move(that.small_data_[i]);
      }

      if (i >= that.size_) {
        // If the size of |this| becomes smaller after the assignment, then
        // destroy any extra elements.
        for (; i < size_; ++i) {
          small_data_[i].~T();
        }
      } else {
        // If the size of |this| becomes larger after the assignement, move
        // construct the new elements that are needed.
        for (; i < that.size_; ++i) {
          new (small_data_ + i) T(std::move(that.small_data_[i]));
        }
      }
      size_ = that.size_;
    }

    // Reset |that| because all of the data has been moved to |this|.
    that.DestructSmallData();
    return *this;
  }

  template <class OtherVector>
  friend bool operator==(const SmallVector& lhs, const OtherVector& rhs) {
    if (lhs.size() != rhs.size()) {
      return false;
    }

    auto rit = rhs.begin();
    for (auto lit = lhs.begin(); lit != lhs.end(); ++lit, ++rit) {
      if (*lit != *rit) {
        return false;
      }
    }
    return true;
  }

// Avoid infinite recursion from rewritten operators in C++20
#if __cplusplus <= 201703L
  friend bool operator==(const std::vector<T>& lhs, const SmallVector& rhs) {
    return rhs == lhs;
  }
#endif

  friend bool operator!=(const SmallVector& lhs, const std::vector<T>& rhs) {
    return !(lhs == rhs);
  }

  friend bool operator!=(const std::vector<T>& lhs, const SmallVector& rhs) {
    return rhs != lhs;
  }

  T& operator[](size_t i) {
    if (!large_data_) {
      return small_data_[i];
    } else {
      return (*large_data_)[i];
    }
  }

  const T& operator[](size_t i) const {
    if (!large_data_) {
      return small_data_[i];
    } else {
      return (*large_data_)[i];
    }
  }

  size_t size() const {
    if (!large_data_) {
      return size_;
    } else {
      return large_data_->size();
    }
  }

  iterator begin() {
    if (large_data_) {
      return large_data_->data();
    } else {
      return small_data_;
    }
  }

  const_iterator begin() const {
    if (large_data_) {
      return large_data_->data();
    } else {
      return small_data_;
    }
  }

  const_iterator cbegin() const { return begin(); }

  iterator end() {
    if (large_data_) {
      return large_data_->data() + large_data_->size();
    } else {
      return small_data_ + size_;
    }
  }

  const_iterator end() const {
    if (large_data_) {
      return large_data_->data() + large_data_->size();
    } else {
      return small_data_ + size_;
    }
  }

  const_iterator cend() const { return end(); }

  T* data() { return begin(); }

  const T* data() const { return cbegin(); }

  T& front() { return (*this)[0]; }

  const T& front() const { return (*this)[0]; }

  iterator erase(const_iterator pos) { return erase(pos, pos + 1); }

  iterator erase(const_iterator first, const_iterator last) {
    if (large_data_) {
      size_t start_index = first - large_data_->data();
      size_t end_index = last - large_data_->data();
      auto r = large_data_->erase(large_data_->begin() + start_index,
                                  large_data_->begin() + end_index);
      return large_data_->data() + (r - large_data_->begin());
    }

    // Since C++11, std::vector has |const_iterator| for the parameters, so I
    // follow that.  However, I need iterators to modify the current container,
    // which is not const.  This is why I cast away the const.
    iterator f = const_cast<iterator>(first);
    iterator l = const_cast<iterator>(last);
    iterator e = end();

    size_t num_of_del_elements = last - first;
    iterator ret = f;
    if (first == last) {
      return ret;
    }

    // Move |last| and any elements after it their earlier position.
    while (l != e) {
      *f = std::move(*l);
      ++f;
      ++l;
    }

    // Destroy the elements that were supposed to be deleted.
    while (f != l) {
      f->~T();
      ++f;
    }

    // Update the size.
    size_ -= num_of_del_elements;
    return ret;
  }

  void push_back(const T& value) {
    if (!large_data_ && size_ == small_size) {
      MoveToLargeData();
    }

    if (large_data_) {
      large_data_->push_back(value);
      return;
    }

    new (small_data_ + size_) T(value);
    ++size_;
  }

  void push_back(T&& value) {
    if (!large_data_ && size_ == small_size) {
      MoveToLargeData();
    }

    if (large_data_) {
      large_data_->push_back(std::move(value));
      return;
    }

    new (small_data_ + size_) T(std::move(value));
    ++size_;
  }

  template <class InputIt>
  iterator insert(iterator pos, InputIt first, InputIt last) {
    size_t element_idx = (pos - begin());
    size_t num_of_new_elements = std::distance(first, last);
    size_t new_size = size_ + num_of_new_elements;
    if (!large_data_ && new_size > small_size) {
      MoveToLargeData();
    }

    if (large_data_) {
      typename std::vector<T>::iterator new_pos =
          large_data_->begin() + element_idx;
      large_data_->insert(new_pos, first, last);
      return begin() + element_idx;
    }

    // Move |pos| and all of the elements after it over |num_of_new_elements|
    // places.  We start at the end and work backwards, to make sure we do not
    // overwrite data that we have not moved yet.
    for (iterator i = begin() + new_size - 1, j = end() - 1; j >= pos;
         --i, --j) {
      if (i >= begin() + size_) {
        new (i) T(std::move(*j));
      } else {
        *i = std::move(*j);
      }
    }

    // Copy the new elements into position.
    iterator p = pos;
    for (; first != last; ++p, ++first) {
      if (p >= small_data_ + size_) {
        new (p) T(*first);
      } else {
        *p = *first;
      }
    }

    // Update the size.
    size_ += num_of_new_elements;
    return pos;
  }

  bool empty() const {
    if (large_data_) {
      return large_data_->empty();
    }
    return size_ == 0;
  }

  void clear() {
    if (large_data_) {
      large_data_->clear();
    } else {
      DestructSmallData();
    }
  }

  template <class... Args>
  void emplace_back(Args&&... args) {
    if (!large_data_ && size_ == small_size) {
      MoveToLargeData();
    }

    if (large_data_) {
      large_data_->emplace_back(std::forward<Args>(args)...);
    } else {
      new (small_data_ + size_) T(std::forward<Args>(args)...);
      ++size_;
    }
  }

  void resize(size_t new_size, const T& v) {
    if (!large_data_ && new_size > small_size) {
      MoveToLargeData();
    }

    if (large_data_) {
      large_data_->resize(new_size, v);
      return;
    }

    // If |new_size| < |size_|, then destroy the extra elements.
    for (size_t i = new_size; i < size_; ++i) {
      small_data_[i].~T();
    }

    // If |new_size| > |size_|, the copy construct the new elements.
    for (size_t i = size_; i < new_size; ++i) {
      new (small_data_ + i) T(v);
    }

    // Update the size.
    size_ = new_size;
  }

 private:
  // Moves all of the element from |small_data_| into a new std::vector that can
  // be access through |large_data|.
  void MoveToLargeData() {
    assert(!large_data_);
    large_data_ = MakeUnique<std::vector<T>>();
    for (size_t i = 0; i < size_; ++i) {
      large_data_->emplace_back(std::move(small_data_[i]));
    }
    DestructSmallData();
  }

  // Destroys all of the elements in |small_data_| that have been constructed.
  void DestructSmallData() {
    for (size_t i = 0; i < size_; ++i) {
      small_data_[i].~T();
    }
    size_ = 0;
  }

  // The number of elements in |small_data_| that have been constructed.
  size_t size_;

  // The pointed used to access the array of elements when the number of
  // elements is small.
  T* small_data_;

  // The actual data used to store the array elements.  It must never be used
  // directly, but must only be accessed through |small_data_|.
  typename std::aligned_storage<sizeof(T), std::alignment_of<T>::value>::type
      buffer[small_size];

  // A pointer to a vector that is used to store the elements of the vector when
  // this size exceeds |small_size|.  If |large_data_| is nullptr, then the data
  // is stored in |small_data_|.  Otherwise, the data is stored in
  // |large_data_|.
  std::unique_ptr<std::vector<T>> large_data_;
};  // namespace utils

}  // namespace utils
}  // namespace spvtools

#endif  // SOURCE_UTIL_SMALL_VECTOR_H_