aboutsummaryrefslogtreecommitdiff
path: root/src/vulkan/transfer_image.cc
blob: 545549d61691196dbd7aae0706b2b7498a69f27d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// Copyright 2018 The Amber Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "src/vulkan/transfer_image.h"

#include <cstring>
#include <limits>
#include <vector>

#include "src/vulkan/command_buffer.h"
#include "src/vulkan/device.h"

namespace amber {
namespace vulkan {
namespace {

const VkImageCreateInfo kDefaultImageInfo = {
    VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, /* sType */
    nullptr,                             /* pNext */
    0,                                   /* flags */
    VK_IMAGE_TYPE_2D,                    /* imageType */
    VK_FORMAT_R8G8B8A8_UNORM,            /* format */
    {250, 250, 1},                       /* extent */
    1,                                   /* mipLevels */
    1,                                   /* arrayLayers */
    VK_SAMPLE_COUNT_1_BIT,               /* samples */
    VK_IMAGE_TILING_OPTIMAL,             /* tiling */
    0,                                   /* usage */
    VK_SHARING_MODE_EXCLUSIVE,           /* sharingMode */
    0,                                   /* queueFamilyIndexCount */
    nullptr,                             /* pQueueFamilyIndices */
    VK_IMAGE_LAYOUT_UNDEFINED,           /* initialLayout */
};

VkSampleCountFlagBits GetVkSampleCount(uint32_t samples) {
  switch (samples) {
    case 1u:
      return VK_SAMPLE_COUNT_1_BIT;
    case 2u:
      return VK_SAMPLE_COUNT_2_BIT;
    case 4u:
      return VK_SAMPLE_COUNT_4_BIT;
    case 8u:
      return VK_SAMPLE_COUNT_8_BIT;
    case 16u:
      return VK_SAMPLE_COUNT_16_BIT;
    case 32u:
      return VK_SAMPLE_COUNT_32_BIT;
    case 64u:
      return VK_SAMPLE_COUNT_64_BIT;
  }

  return VK_SAMPLE_COUNT_FLAG_BITS_MAX_ENUM;
}

}  // namespace

TransferImage::TransferImage(Device* device,
                             const Format& format,
                             VkImageAspectFlags aspect,
                             VkImageType image_type,
                             uint32_t x,
                             uint32_t y,
                             uint32_t z,
                             uint32_t mip_levels,
                             uint32_t base_mip_level,
                             uint32_t used_mip_levels,
                             uint32_t samples)
    : Resource(
          device,
          x * y * z *
              (format.SizeInBytes() +
               // D24_UNORM_S8_UINT requires 32bit component for depth when
               // performing buffer copies. Reserve extra room to handle that.
               (format.GetFormatType() == FormatType::kD24_UNORM_S8_UINT ? 1
                                                                         : 0))),
      image_info_(kDefaultImageInfo),
      aspect_(aspect),
      mip_levels_(mip_levels),
      base_mip_level_(base_mip_level),
      used_mip_levels_(used_mip_levels),
      samples_(samples) {
  image_info_.format = device_->GetVkFormat(format);
  image_info_.imageType = image_type;
  image_info_.extent = {x, y, z};
  image_info_.mipLevels = mip_levels;
  image_info_.samples = GetVkSampleCount(samples);
}

TransferImage::~TransferImage() {
  if (view_ != VK_NULL_HANDLE) {
    device_->GetPtrs()->vkDestroyImageView(device_->GetVkDevice(), view_,
                                           nullptr);
  }

  if (image_ != VK_NULL_HANDLE)
    device_->GetPtrs()->vkDestroyImage(device_->GetVkDevice(), image_, nullptr);

  if (memory_ != VK_NULL_HANDLE)
    device_->GetPtrs()->vkFreeMemory(device_->GetVkDevice(), memory_, nullptr);

  if (host_accessible_memory_ != VK_NULL_HANDLE) {
    UnMapMemory(host_accessible_memory_);
    device_->GetPtrs()->vkFreeMemory(device_->GetVkDevice(),
                                     host_accessible_memory_, nullptr);
  }

  if (host_accessible_buffer_ != VK_NULL_HANDLE) {
    device_->GetPtrs()->vkDestroyBuffer(device_->GetVkDevice(),
                                        host_accessible_buffer_, nullptr);
  }
}

Result TransferImage::Initialize(VkImageUsageFlags usage) {
  if (image_ != VK_NULL_HANDLE)
    return Result("Vulkan::TransferImage was already initialized");

  image_info_.usage = usage;

  if (device_->GetPtrs()->vkCreateImage(device_->GetVkDevice(), &image_info_,
                                        nullptr, &image_) != VK_SUCCESS) {
    return Result("Vulkan::Calling vkCreateImage Fail");
  }

  uint32_t memory_type_index = 0;
  Result r = AllocateAndBindMemoryToVkImage(image_, &memory_,
                                            VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
                                            false, &memory_type_index);
  if (!r.IsSuccess())
    return r;

  if (aspect_ & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) &&
      !(usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
    // Combined depth/stencil image used as a descriptor. Only one aspect can be
    // used for the image view.
    r = CreateVkImageView(VK_IMAGE_ASPECT_DEPTH_BIT);
  } else {
    r = CreateVkImageView(aspect_);
  }

  if (!r.IsSuccess())
    return r;

  // For images, we always make a secondary buffer. When the tiling of an image
  // is optimal, read/write data from CPU does not show correct values. We need
  // a secondary buffer to convert the GPU-optimal data to CPU-readable data
  // and vice versa.
  r = CreateVkBuffer(
      &host_accessible_buffer_,
      VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT);
  if (!r.IsSuccess())
    return r;

  memory_type_index = 0;
  r = AllocateAndBindMemoryToVkBuffer(host_accessible_buffer_,
                                      &host_accessible_memory_,
                                      VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
                                          VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
                                      true, &memory_type_index);
  if (!r.IsSuccess())
    return r;

  return MapMemory(host_accessible_memory_);
}

VkImageViewType TransferImage::GetImageViewType() const {
  // TODO(alan-baker): handle other view types.
  // 1D-array, 2D-array, Cube, Cube-array.
  switch (image_info_.imageType) {
    case VK_IMAGE_TYPE_1D:
      return VK_IMAGE_VIEW_TYPE_1D;
    case VK_IMAGE_TYPE_2D:
      return VK_IMAGE_VIEW_TYPE_2D;
    case VK_IMAGE_TYPE_3D:
      return VK_IMAGE_VIEW_TYPE_3D;
    default:
      break;
  }

  // Default to 2D image view.
  return VK_IMAGE_VIEW_TYPE_2D;
}

Result TransferImage::CreateVkImageView(VkImageAspectFlags aspect) {
  VkImageViewCreateInfo image_view_info = VkImageViewCreateInfo();
  image_view_info.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
  image_view_info.image = image_;
  image_view_info.viewType = GetImageViewType();
  image_view_info.format = image_info_.format;
  image_view_info.components = {
      VK_COMPONENT_SWIZZLE_R,
      VK_COMPONENT_SWIZZLE_G,
      VK_COMPONENT_SWIZZLE_B,
      VK_COMPONENT_SWIZZLE_A,
  };
  image_view_info.subresourceRange = {
      aspect,           /* aspectMask */
      base_mip_level_,  /* baseMipLevel */
      used_mip_levels_, /* levelCount */
      0,                /* baseArrayLayer */
      1,                /* layerCount */
  };

  if (device_->GetPtrs()->vkCreateImageView(device_->GetVkDevice(),
                                            &image_view_info, nullptr,
                                            &view_) != VK_SUCCESS) {
    return Result("Vulkan::Calling vkCreateImageView Fail");
  }

  return {};
}

VkBufferImageCopy TransferImage::CreateBufferImageCopy(
    VkImageAspectFlags aspect,
    uint32_t mip_level) {
  VkBufferImageCopy copy_region = VkBufferImageCopy();
  if (aspect == VK_IMAGE_ASPECT_STENCIL_BIT) {
    // Store stencil data at the end of the buffer after depth data.
    copy_region.bufferOffset =
        GetSizeInBytes() - image_info_.extent.width * image_info_.extent.height;
  } else {
    copy_region.bufferOffset = 0;
  }
  // Row length of 0 results in tight packing of rows, so the row stride
  // is the number of texels times the texel stride.
  copy_region.bufferRowLength = 0;
  copy_region.bufferImageHeight = 0;
  copy_region.imageSubresource = {
      aspect,    /* aspectMask */
      mip_level, /* mipLevel */
      0,         /* baseArrayLayer */
      1,         /* layerCount */
  };
  copy_region.imageOffset = {0, 0, 0};
  copy_region.imageExtent = {image_info_.extent.width >> mip_level,
                             image_info_.extent.height >> mip_level,
                             image_info_.extent.depth};
  return copy_region;
}

void TransferImage::CopyToHost(CommandBuffer* command_buffer) {
  const VkImageAspectFlagBits aspects[] = {VK_IMAGE_ASPECT_COLOR_BIT,
                                           VK_IMAGE_ASPECT_DEPTH_BIT,
                                           VK_IMAGE_ASPECT_STENCIL_BIT};
  // Copy operations don't support multisample images.
  if (samples_ > 1)
    return;

  std::vector<VkBufferImageCopy> copy_regions;
  uint32_t last_mip_level = used_mip_levels_ == VK_REMAINING_MIP_LEVELS
                                ? mip_levels_
                                : base_mip_level_ + used_mip_levels_;
  for (uint32_t i = base_mip_level_; i < last_mip_level; i++) {
    for (auto aspect : aspects) {
      if (aspect_ & aspect) {
        copy_regions.push_back(CreateBufferImageCopy(aspect, i));
      }
    }
  }

  device_->GetPtrs()->vkCmdCopyImageToBuffer(
      command_buffer->GetVkCommandBuffer(), image_,
      VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, host_accessible_buffer_,
      static_cast<uint32_t>(copy_regions.size()), copy_regions.data());

  MemoryBarrier(command_buffer);
}

void TransferImage::CopyToDevice(CommandBuffer* command_buffer) {
  // Copy operations don't support multisample images.
  if (samples_ > 1)
    return;

  const VkImageAspectFlagBits aspects[] = {VK_IMAGE_ASPECT_COLOR_BIT,
                                           VK_IMAGE_ASPECT_DEPTH_BIT,
                                           VK_IMAGE_ASPECT_STENCIL_BIT};
  std::vector<VkBufferImageCopy> copy_regions;
  uint32_t last_mip_level = used_mip_levels_ == VK_REMAINING_MIP_LEVELS
                                ? mip_levels_
                                : base_mip_level_ + used_mip_levels_;
  for (uint32_t i = base_mip_level_; i < last_mip_level; i++) {
    for (auto aspect : aspects) {
      if (aspect_ & aspect) {
        copy_regions.push_back(CreateBufferImageCopy(aspect, i));
      }
    }
  }

  device_->GetPtrs()->vkCmdCopyBufferToImage(
      command_buffer->GetVkCommandBuffer(), host_accessible_buffer_, image_,
      VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
      static_cast<uint32_t>(copy_regions.size()), copy_regions.data());

  MemoryBarrier(command_buffer);
}

void TransferImage::ImageBarrier(CommandBuffer* command_buffer,
                                 VkImageLayout to_layout,
                                 VkPipelineStageFlags to_stage) {
  if (to_layout == layout_ && to_stage == stage_)
    return;

  VkImageMemoryBarrier barrier = VkImageMemoryBarrier();
  barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
  barrier.oldLayout = layout_;
  barrier.newLayout = to_layout;
  barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
  barrier.image = image_;
  barrier.subresourceRange = {
      aspect_,                 /* aspectMask */
      0,                       /* baseMipLevel */
      VK_REMAINING_MIP_LEVELS, /* levelCount */
      0,                       /* baseArrayLayer */
      1,                       /* layerCount */
  };

  switch (layout_) {
    case VK_IMAGE_LAYOUT_PREINITIALIZED:
      barrier.srcAccessMask = VK_ACCESS_HOST_WRITE_BIT;
      break;
    case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
      barrier.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
      break;
    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
      barrier.srcAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
      break;
    case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
      barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
      break;
    case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
      barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
      break;
    default:
      barrier.srcAccessMask = 0;
      break;
  }

  switch (to_layout) {
    case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
      barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
                              VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
      break;
    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
      barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
                              VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
      break;
    case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
      barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT;
      break;
    case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
      barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
      break;
    case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
      barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
      break;
    case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
      barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
      break;
    default:
      barrier.dstAccessMask = 0;
      break;
  }

  device_->GetPtrs()->vkCmdPipelineBarrier(command_buffer->GetVkCommandBuffer(),
                                           stage_, to_stage, 0, 0, NULL, 0,
                                           NULL, 1, &barrier);

  layout_ = to_layout;
  stage_ = to_stage;
}

Result TransferImage::AllocateAndBindMemoryToVkImage(
    VkImage image,
    VkDeviceMemory* memory,
    VkMemoryPropertyFlags flags,
    bool force_flags,
    uint32_t* memory_type_index) {
  if (memory_type_index == nullptr) {
    return Result(
        "Vulkan: TransferImage::AllocateAndBindMemoryToVkImage "
        "memory_type_index is "
        "nullptr");
  }

  *memory_type_index = 0;

  if (image == VK_NULL_HANDLE)
    return Result("Vulkan::Given VkImage is VK_NULL_HANDLE");
  if (memory == nullptr)
    return Result("Vulkan::Given VkDeviceMemory pointer is nullptr");

  VkMemoryRequirements requirement;
  device_->GetPtrs()->vkGetImageMemoryRequirements(device_->GetVkDevice(),
                                                   image, &requirement);

  *memory_type_index =
      ChooseMemory(requirement.memoryTypeBits, flags, force_flags);
  if (*memory_type_index == std::numeric_limits<uint32_t>::max())
    return Result("Vulkan::Find Proper Memory Fail");

  Result r = AllocateMemory(memory, requirement.size, *memory_type_index);
  if (!r.IsSuccess())
    return r;

  if (device_->GetPtrs()->vkBindImageMemory(device_->GetVkDevice(), image,
                                            *memory, 0) != VK_SUCCESS) {
    return Result("Vulkan::Calling vkBindImageMemory Fail");
  }

  return {};
}

}  // namespace vulkan
}  // namespace amber