/*------------------------------------------------------------------------- * drawElements Base Portability Library * ------------------------------------- * * Copyright 2017 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Testing of deFloat16 functions. *//*--------------------------------------------------------------------*/ #include "deFloat16.h" #include "deRandom.h" DE_BEGIN_EXTERN_C static float getFloat32 (deUint32 sign, deUint32 biased_exponent, deUint32 mantissa) { union { float f; deUint32 u; } x; x.u = (sign << 31) | (biased_exponent << 23) | mantissa; return x.f; } static deFloat16 getFloat16 (deUint16 sign, deUint16 biased_exponent, deUint16 mantissa) { return (deFloat16) ((sign << 15) | (biased_exponent << 10) | mantissa); } static deFloat16 deFloat32To16RTZ (float val32) { return deFloat32To16Round(val32, DE_ROUNDINGMODE_TO_ZERO); } static deFloat16 deFloat32To16RTE (float val32) { return deFloat32To16Round(val32, DE_ROUNDINGMODE_TO_NEAREST_EVEN); } void deFloat16_selfTest (void) { /* 16-bit: 1 5 (0x00--0x1f) 10 (0x000--0x3ff) * 32-bit: 1 8 (0x00--0xff) 23 (0x000000--0x7fffff) */ deRandom rnd; int idx; deRandom_init(&rnd, 0xdeadbeefu-1); /* --- For rounding mode RTZ --- */ /* Zero */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0, 0)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0, 0)) == getFloat16(1, 0, 0)); /* Inf */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0)) == getFloat16(0, 0x1f, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0)) == getFloat16(1, 0x1f, 0)); /* SNaN */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 1)) == getFloat16(0, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 1)) == getFloat16(1, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x3fffff)) == getFloat16(0, 0x1f, 0x1ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x3fffff)) == getFloat16(1, 0x1f, 0x1ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x0003ff)) == getFloat16(0, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x0003ff)) == getFloat16(1, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x123456)) == getFloat16(0, 0x1f, 0x123456 >> 13)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x123456)) == getFloat16(1, 0x1f, 0x123456 >> 13)); /* QNaN */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x400000)) == getFloat16(0, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x400000)) == getFloat16(1, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x7fffff)) == getFloat16(0, 0x1f, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x7fffff)) == getFloat16(1, 0x1f, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x4003ff)) == getFloat16(0, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x4003ff)) == getFloat16(1, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0xff, 0x723456)) == getFloat16(0, 0x1f, 0x723456 >> 13)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0xff, 0x723456)) == getFloat16(1, 0x1f, 0x723456 >> 13)); /* Denormalized */ for (idx = 0; idx < 256; ++idx) { deUint32 mantissa = deRandom_getUint32(&rnd); mantissa &= 0x7fffffu; /* Take the last 23 bits */ mantissa |= (mantissa == 0); /* Make sure it is not zero */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 0, mantissa)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 0, mantissa)) == getFloat16(1, 0, 0)); } /* Normalized -> zero */ /* Absolute value: minimal 32-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 1, 0)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 1, 0)) == getFloat16(1, 0, 0)); /* Absolute value: 2^-24 - e, extremely near minimal 16-bit denormalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 25, 0x7fffff)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 25, 0x7fffff)) == getFloat16(1, 0, 0)); for (idx = 0; idx < 256; ++idx) { deUint32 exponent = deRandom_getUint32(&rnd); deUint32 mantissa = deRandom_getUint32(&rnd); exponent = exponent % (127 - 25) + 1; /* Make sure >= 1, <= 127 - 25 */ mantissa &= 0x7fffffu; /* Take the last 23 bits */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, exponent, mantissa)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, exponent, mantissa)) == getFloat16(1, 0, 0)); } /* Normalized -> denormalized */ /* Absolute value: 2^-24, minimal 16-bit denormalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 24, 0)) == getFloat16(0, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 24, 0)) == getFloat16(1, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 24, 1)) == getFloat16(0, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 24, 1)) == getFloat16(1, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 20, 0x123456)) == getFloat16(0, 0, 0x12)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 20, 0x123456)) == getFloat16(1, 0, 0x12)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 18, 0x654321)) == getFloat16(0, 0, 0x72)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 18, 0x654321)) == getFloat16(1, 0, 0x72)); /* Absolute value: 2^-14 - 2^-24 = (2 - 2^-9) * 2^-15, maximal 16-bit denormalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 15, 0x7fc000)) == getFloat16(0, 0, 0x3ff)); /* 0x7fc000: 0111 1111 1100 0000 0000 0000 */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 15, 0x7fc000)) == getFloat16(1, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 15, 0x7fc000 - 1)) == getFloat16(0, 0, 0x3fe)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 15, 0x7fc000 - 1)) == getFloat16(1, 0, 0x3fe)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 15, 0x7fc000 + 1)) == getFloat16(0, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 15, 0x7fc000 + 1)) == getFloat16(1, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 15, 0x7fffff)) == getFloat16(0, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 15, 0x7fffff)) == getFloat16(1, 0, 0x3ff)); /* Normalized -> normalized */ /* Absolute value: 2^-14, minimal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 - 14, 0)) == getFloat16(0, 1, 0)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 - 14, 0)) == getFloat16(1, 1, 0)); /* Absolute value: 65504 - 2^-23, extremely near maximal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 + 15, (0x3ff << 13) - 1)) == getFloat16(0, 0x1e, 0x3fe)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 + 15, (0x3ff << 13) - 1)) == getFloat16(1, 0x1e, 0x3fe)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 + 15, (0x3ff << 13) - 0x456)) == getFloat16(0, 0x1e, 0x3fe)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 + 15, (0x3ff << 13) - 0x456)) == getFloat16(1, 0x1e, 0x3fe)); /* Absolute value: 65504, maximal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 + 15, 0x3ff << 13)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 + 15, 0x3ff << 13)) == getFloat16(1, 0x1e, 0x3ff)); for (idx = 0; idx < 256; ++idx) { deUint32 exponent = deRandom_getUint32(&rnd); deUint32 mantissa = deRandom_getUint32(&rnd); exponent = exponent % ((127 + 14) - (127 -14) + 1) + (127 - 14); /* Make sure >= 127 - 14, <= 127 + 14 */ mantissa &= 0x7fffffu; /* Take the last 23 bits */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, exponent, mantissa)) == getFloat16(0, (deUint16) (exponent + 15 - 127), (deUint16) (mantissa >> 13))); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, exponent, mantissa)) == getFloat16(1, (deUint16) (exponent + 15 - 127), (deUint16) (mantissa >> 13))); } /* Normalized -> minimal/maximal normalized */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 + 15, (0x3ff << 13) + 1)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 + 15, (0x3ff << 13) + 1)) == getFloat16(1, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, 127 + 15, (0x3ff << 13) + 0x123)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, 127 + 15, (0x3ff << 13) + 0x123)) == getFloat16(1, 0x1e, 0x3ff)); for (idx = 0; idx < 256; ++idx) { deUint32 exponent = deRandom_getUint32(&rnd); deUint32 mantissa = deRandom_getUint32(&rnd); exponent = exponent % (0xfe - (127 + 16) + 1) + (127 + 16); /* Make sure >= 127 + 16, <= 0xfe */ mantissa &= 0x7fffffu; /* Take the last 23 bits */ DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(0, exponent, mantissa)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTZ(getFloat32(1, exponent, mantissa)) == getFloat16(1, 0x1e, 0x3ff)); } /* --- For rounding mode RTE --- */ /* Zero */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0, 0)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0, 0)) == getFloat16(1, 0, 0)); /* Inf */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0)) == getFloat16(0, 0x1f, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0)) == getFloat16(1, 0x1f, 0)); /* SNaN */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 1)) == getFloat16(0, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 1)) == getFloat16(1, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x3fffff)) == getFloat16(0, 0x1f, 0x1ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x3fffff)) == getFloat16(1, 0x1f, 0x1ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x0003ff)) == getFloat16(0, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x0003ff)) == getFloat16(1, 0x1f, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x123456)) == getFloat16(0, 0x1f, 0x123456 >> 13)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x123456)) == getFloat16(1, 0x1f, 0x123456 >> 13)); /* QNaN */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x400000)) == getFloat16(0, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x400000)) == getFloat16(1, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x7fffff)) == getFloat16(0, 0x1f, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x7fffff)) == getFloat16(1, 0x1f, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x4003ff)) == getFloat16(0, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x4003ff)) == getFloat16(1, 0x1f, 0x200)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0xff, 0x723456)) == getFloat16(0, 0x1f, 0x723456 >> 13)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0xff, 0x723456)) == getFloat16(1, 0x1f, 0x723456 >> 13)); /* Denormalized */ for (idx = 0; idx < 256; ++idx) { deUint32 mantissa = deRandom_getUint32(&rnd); mantissa &= 0x7fffffu; /* Take the last 23 bits */ mantissa |= (mantissa == 0); /* Make sure it is not zero */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 0, mantissa)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 0, mantissa)) == getFloat16(1, 0, 0)); } /* Normalized -> zero and denormalized */ /* Absolute value: minimal 32-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 1, 0)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 1, 0)) == getFloat16(1, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 42, 0x7abcde)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 42, 0x7abcde)) == getFloat16(1, 0, 0)); for (idx = 0; idx < 256; ++idx) { deUint32 exponent = deRandom_getUint32(&rnd); deUint32 mantissa = deRandom_getUint32(&rnd); exponent = exponent % (127 - 26) + 1; /* Make sure >= 1, <= 127 - 26 */ mantissa &= 0x7fffffu; /* Take the last 23 bits */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, exponent, mantissa)) == getFloat16(0, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, exponent, mantissa)) == getFloat16(1, 0, 0)); } /* Absolute value: 2^-25, minimal 16-bit denormalized: 2^-24 */ /* The following six cases need to right shift mantissa (with leading 1) 10 bits --------------------> to here */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 25, 0)) == getFloat16(0, 0, 0)); /* XX XXXX XXXX 1 000 0000 0000 0000 0000 0000 */ /* Take the first 10 bits with RTE ------ 00 0000 0000 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 25, 0)) == getFloat16(1, 0, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 25, 1)) == getFloat16(0, 0, 1)); /* XX XXXX XXXX 1 000 0000 0000 0000 0000 0001 */ /* Take the first 10 bits with RTE ------ 00 0000 0001 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 25, 1)) == getFloat16(1, 0, 1)); /* Absolute value: 2^-24 - e, extremely near minimal 16-bit denormalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 25, 0x7fffff)) == getFloat16(0, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 25, 0x7fffff)) == getFloat16(1, 0, 1)); /* Absolute value: 2^-24, minimal 16-bit denormalized */ /* The following (127 - 24) cases need to right shift mantissa (with leading 1) 9 bits -----------------> to here */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 24, 0)) == getFloat16(0, 0, 1)); /* X XXXX XXXX 1 000 0000 0000 0000 0000 0000 */ /* Take the first 10 bits with RTE ---------- 0 0000 0000 1 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 24, 0)) == getFloat16(1, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 24, 1)) == getFloat16(0, 0, 1)); /* X XXXX XXXX 1 000 0000 0000 0000 0000 0001 */ /* Take the first 10 bits with RTE ---------- 0 0000 0000 1 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 24, 1)) == getFloat16(1, 0, 1)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 24, 0x400000)) == getFloat16(0, 0, 2)); /* X XXXX XXXX 1 100 0000 0000 0000 0000 0000 */ /* Take the first 10 bits with RTE ---------- 0 0000 0000 2 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 24, 0x400000)) == getFloat16(1, 0, 2)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 24, 0x400001)) == getFloat16(0, 0, 2)); /* X XXXX XXXX 1 100 0000 0000 0000 0000 0001 */ /* Take the first 10 bits with RTE ---------- 0 0000 0000 2 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 24, 0x400001)) == getFloat16(1, 0, 2)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 24, 0x4fffff)) == getFloat16(0, 0, 2)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 24, 0x4fffff)) == getFloat16(1, 0, 2)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 20, 0x123456)) == getFloat16(0, 0, 0x12)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 20, 0x123456)) == getFloat16(1, 0, 0x12)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 18, 0x654321)) == getFloat16(0, 0, 0x73)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 18, 0x654321)) == getFloat16(1, 0, 0x73)); /* Absolute value: 2^-14 - 2^-24 = (2 - 2^-9) * 2^-15, maximal 16-bit denormalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 15, 0x7fc000)) == getFloat16(0, 0, 0x3ff)); /* 0x7fc000: 0111 1111 1100 0000 0000 0000 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 15, 0x7fc000)) == getFloat16(1, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 15, 0x7fc000 - 1)) == getFloat16(0, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 15, 0x7fc000 - 1)) == getFloat16(1, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 15, 0x7fc000 + 1)) == getFloat16(0, 0, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 15, 0x7fc000 + 1)) == getFloat16(1, 0, 0x3ff)); /* Normalized -> normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 15, 0x7fe000)) == getFloat16(0, 1, 0)); /* 0x7fe000: 0111 1111 1110 0000 0000 0000 */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 15, 0x7fe000)) == getFloat16(1, 1, 0)); /* Absolute value: (2 - 2^-23) * 2^-15, extremely near 2^-14, minimal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 15, 0x7fffff)) == getFloat16(0, 1, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 15, 0x7fffff)) == getFloat16(1, 1, 0)); /* Absolute value: 2^-14, minimal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 - 14, 0)) == getFloat16(0, 1, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 - 14, 0)) == getFloat16(1, 1, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3fe << 13) + (1 << 12))) == getFloat16(0, 0x1e, 0x3fe)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3fe << 13) + (1 << 12))) == getFloat16(1, 0x1e, 0x3fe)); /* Normalized -> minimal/maximal normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3fe << 13) + (1 << 12) + 1)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3fe << 13) + (1 << 12) + 1)) == getFloat16(1, 0x1e, 0x3ff)); /* Absolute value: 65504 - 2^-23, extremely near maximal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3ff << 13) - 1)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3ff << 13) - 1)) == getFloat16(1, 0x1e, 0x3ff)); /* Absolute value: 65504, maximal 16-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, 0x3ff << 13)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, 0x3ff << 13)) == getFloat16(1, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3ff << 13) + 1)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3ff << 13) + 1)) == getFloat16(1, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3ff << 13) + 0x456)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3ff << 13) + 0x456)) == getFloat16(1, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3ff << 13) + (1 << 12) - 1)) == getFloat16(0, 0x1e, 0x3ff)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3ff << 13) + (1 << 12) - 1)) == getFloat16(1, 0x1e, 0x3ff)); /* Normalized -> Inf */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, (0x3ff << 13) + (1 << 12))) == getFloat16(0, 0x1f, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, (0x3ff << 13) + (1 << 12))) == getFloat16(1, 0x1f, 0)); /* Absolute value: maximal 32-bit normalized */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, 127 + 15, 0x7fffff)) == getFloat16(0, 0x1f, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, 127 + 15, 0x7fffff)) == getFloat16(1, 0x1f, 0)); for (idx = 0; idx < 256; ++idx) { deUint32 exponent = deRandom_getUint32(&rnd); deUint32 mantissa = deRandom_getUint32(&rnd); exponent = exponent % (0xfe - (127 + 16) + 1) + (127 + 16); /* Make sure >= 127 + 16, <= 0xfe */ mantissa &= 0x7fffffu; /* Take the last 23 bits */ DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(0, exponent, mantissa)) == getFloat16(0, 0x1f, 0)); DE_TEST_ASSERT(deFloat32To16RTE(getFloat32(1, exponent, mantissa)) == getFloat16(1, 0x1f, 0)); } } DE_END_EXTERN_C