#ifndef _DEMATH_H #define _DEMATH_H /*------------------------------------------------------------------------- * drawElements Base Portability Library * ------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Basic mathematical operations. *//*--------------------------------------------------------------------*/ #include "deDefs.h" #include "deMemory.h" #include #include DE_BEGIN_EXTERN_C /* Mathematical constants. */ #define DE_PI 3.14159265358979324f /*!< Pi. */ #define DE_LOG_2 0.69314718056f /*!< log_e(2.0) */ #define DE_INV_LOG_2 1.44269504089f /*!< 1.0 / log_e(2.0) */ #define DE_E 2.71828182845904523536f /*!< e. */ #define DE_LOG2_E 1.44269504088896340736f /*!< log_2(e). */ #define DE_INV_LOG2_E 0.69314718055994530942f /*!< 1.0 / log_2(e). */ #define DE_PI_DOUBLE 3.14159265358979323846 /*!< Pi as a double. */ #define DE_PI_16BIT 0x4248 /*!< Pi. as a float16b */ /* Rounding mode control. */ typedef enum deRoundingMode_e { DE_ROUNDINGMODE_TO_NEAREST_EVEN = 0, DE_ROUNDINGMODE_TO_ZERO, DE_ROUNDINGMODE_TO_POSITIVE_INF, DE_ROUNDINGMODE_TO_NEGATIVE_INF, DE_ROUNDINGMODE_LAST } deRoundingMode; deRoundingMode deGetRoundingMode (void); deBool deSetRoundingMode (deRoundingMode mode); void deMath_selfTest (void); /* Float properties */ /* \note The NaN test probably won't work with -ffast-math */ DE_INLINE int deFloatIsInf (float x) { return (x > FLT_MAX) - (x < -FLT_MAX); } DE_INLINE deBool deFloatIsNaN (float x) { return (x != x); } DE_INLINE int deIsInf (double x) { return (x > DBL_MAX) - (x < -DBL_MAX); } DE_INLINE deBool deIsNaN (double x) { return (x != x); } DE_INLINE deUint32 deFloatBitsToUint32(float x) { deUint32 bits; deMemcpy((void *)&bits, (void *)&x, 4); return bits; } DE_INLINE deUint64 deDoubleBitsToUint64(double x) { deUint64 bits; deMemcpy((void *)&bits, (void *)&x, 8); return bits; } DE_INLINE deBool deFloatIsPositiveZero(float x) { return x == 0 && (deFloatBitsToUint32(x) >> 31) == 0; } DE_INLINE deBool deDoubleIsPositiveZero(double x) { return x == 0 && (deDoubleBitsToUint64(x) >> 63) == 0; } DE_INLINE deBool deFloatIsNegativeZero(float x) { return x == 0 && (deFloatBitsToUint32(x) >> 31) != 0; } DE_INLINE deBool deDoubleIsNegativeZero(double x) { return x == 0 && (deDoubleBitsToUint64(x) >> 63) != 0; } DE_INLINE deBool deFloatIsIEEENaN(float x) { deUint32 e = (deFloatBitsToUint32(x) & 0x7f800000u) >> 23; deUint32 m = (deFloatBitsToUint32(x) & 0x007fffffu); return e == 0xff && m != 0; } DE_INLINE deBool deDoubleIsIEEENaN(double x) { deUint64 e = (deDoubleBitsToUint64(x) & 0x7ff0000000000000ull) >> 52; deUint64 m = (deDoubleBitsToUint64(x) & 0x000fffffffffffffull); return e == 0x7ff && m != 0; } /* \note The definition used for signaling NaN here is valid for ARM and * x86 but possibly not for other platforms. * * These are defined as overloads so that they can be used in templated * code without risking a type conversion which would triggern an exception * on a signaling NaN. We don't use deIsNan in these helpers because they * do a comparison operation which may also trigger exceptions. */ DE_INLINE deBool deFloatIsSignalingNaN(float x) { return deFloatIsIEEENaN(x) && (deFloatBitsToUint32(x) & (1u << 22)) == 0; } DE_INLINE deBool deDoubleIsSignalingNaN(double x) { return deDoubleIsIEEENaN(x) && (deDoubleBitsToUint64(x) & (1ull << 51)) == 0; } DE_INLINE deBool deFloatIsQuietNaN(float x) { return deFloatIsIEEENaN(x) && (deFloatBitsToUint32(x) & (1u << 22)) != 0; } DE_INLINE deBool deDoubleIsQuietNaN(double x) { return deDoubleIsIEEENaN(x) && (deDoubleBitsToUint64(x) & (1ull << 51)) != 0; } /* Basic utilities. */ DE_INLINE float deFloatAbs (float x) { return (x >= 0.0f) ? x : -x; } DE_INLINE float deFloatMin (float a, float b) { return (a <= b) ? a : b; } DE_INLINE float deFloatMax (float a, float b) { return (a >= b) ? a : b; } DE_INLINE float deFloatClamp (float x, float mn, float mx) { return (x <= mn) ? mn : ((x >= mx) ? mx : x); } DE_INLINE double deAbs (double x) { return (x >= 0.0) ? x : -x; } DE_INLINE double deMin (double a, double b) { return (a <= b) ? a : b; } DE_INLINE double deMax (double a, double b) { return (a >= b) ? a : b; } DE_INLINE double deClamp (double x, double mn, double mx) { return (x <= mn) ? mn : ((x >= mx) ? mx : x); } /* Utility functions. */ DE_INLINE float deFloatSign (float a) { return (a == 0.0f) ? 0.0f : ((a > 0.0f) ? +1.0f : -1.0f); } DE_INLINE int deFloatIntSign (float a) { return (a == 0.0f) ? 0 : ((a > 0.0f) ? +1 : -1); } DE_INLINE float deFloatFloor (float a) { return (float)floor(a); } DE_INLINE float deFloatCeil (float a) { return (float)ceil(a); } DE_INLINE float deFloatRound (float a) { return deFloatFloor(a + 0.5f); } DE_INLINE float deFloatFrac (float a) { return a - deFloatFloor(a); } DE_INLINE float deFloatMod (float a, float b) { return (float)fmod(a, b); } DE_INLINE float deFloatModf (float x, float* i) { double j = 0; double ret = modf(x, &j); *i = (float)j; return (float)ret; } DE_INLINE float deFloatMadd (float a, float b, float c) { return (a*b) + c; } DE_INLINE float deFloatTrunc (float a) { return deFloatSign(a) * deFloatFloor(deFloatAbs(a)); } DE_INLINE float deFloatLdExp (float a, int exponent) { return (float)ldexp(a, exponent); } DE_INLINE float deFloatFrExp (float x, int* exponent) { return (float)frexp(x, exponent); } float deFloatFractExp (float x, int* exponent); DE_INLINE double deSign (double x) { return deIsNaN(x) ? x : (double)((x > 0.0) - (x < 0.0)); } DE_INLINE int deIntSign (double x) { return (x > 0.0) - (x < 0.0); } DE_INLINE double deFloor (double a) { return floor(a); } DE_INLINE double deCeil (double a) { return ceil(a); } DE_INLINE double deRound (double a) { return floor(a + 0.5); } DE_INLINE double deFrac (double a) { return a - deFloor(a); } DE_INLINE double deMod (double a, double b) { return fmod(a, b); } DE_INLINE double deModf (double x, double* i) { return modf(x, i); } DE_INLINE double deMadd (double a, double b, double c) { return (a*b) + c; } DE_INLINE double deTrunc (double a) { return deSign(a) * floor(fabs(a)); } DE_INLINE double deLdExp (double a, int exponent) { return ldexp(a, exponent); } double deRoundEven (double a); DE_INLINE double deFrExp (double x, int* exponent) { return frexp(x, exponent); } /* Like frexp, except the returned fraction is in range [1.0, 2.0) */ double deFractExp (double x, int* exponent); /* Exponential functions. */ DE_INLINE float deFloatPow (float a, float b) { return (float)pow(a, b); } DE_INLINE float deFloatExp (float a) { return (float)exp(a); } DE_INLINE float deFloatLog (float a) { return (float)log(a); } DE_INLINE float deFloatExp2 (float a) { return (float)exp(a * DE_LOG_2); } DE_INLINE float deFloatLog2 (float a) { return (float)log(a) * DE_INV_LOG_2; } DE_INLINE float deFloatSqrt (float a) { return (float)sqrt(a); } DE_INLINE float deFloatRcp (float a) { return (1.0f / a); } DE_INLINE float deFloatRsq (float a) { float s = (float)sqrt(a); return (s == 0.0f) ? 0.0f : (1.0f / s); } DE_INLINE double dePow (double a, double b) { return pow(a, b); } DE_INLINE double deExp (double a) { return exp(a); } DE_INLINE double deLog (double a) { return log(a); } DE_INLINE double deExp2 (double a) { return exp(a * log(2.0)); } DE_INLINE double deLog2 (double a) { return log(a) / log(2.0); } DE_INLINE double deSqrt (double a) { return sqrt(a); } DE_INLINE double deCbrt (double a) { return deSign(a) * dePow(deAbs(a), 1.0 / 3.0); } /* Geometric functions. */ DE_INLINE float deFloatRadians (float a) { return a * (DE_PI / 180.0f); } DE_INLINE float deFloatDegrees (float a) { return a * (180.0f / DE_PI); } DE_INLINE float deFloatSin (float a) { return (float)sin(a); } DE_INLINE float deFloatCos (float a) { return (float)cos(a); } DE_INLINE float deFloatTan (float a) { return (float)tan(a); } DE_INLINE float deFloatAsin (float a) { return (float)asin(a); } DE_INLINE float deFloatAcos (float a) { return (float)acos(a); } DE_INLINE float deFloatAtan2 (float y, float x) { return (float)atan2(y, x); } DE_INLINE float deFloatAtanOver (float yOverX) { return (float)atan(yOverX); } DE_INLINE float deFloatSinh (float a) { return (float)sinh(a); } DE_INLINE float deFloatCosh (float a) { return (float)cosh(a); } DE_INLINE float deFloatTanh (float a) { return (float)tanh(a); } DE_INLINE float deFloatAsinh (float a) { return deFloatLog(a + deFloatSqrt(a*a + 1)); } DE_INLINE float deFloatAcosh (float a) { return deFloatLog(a + deFloatSqrt(a*a - 1)); } DE_INLINE float deFloatAtanh (float a) { return 0.5f*deFloatLog((1.0f+a)/(1.0f-a)); } DE_INLINE double deSin (double a) { return sin(a); } DE_INLINE double deCos (double a) { return cos(a); } DE_INLINE double deTan (double a) { return tan(a); } DE_INLINE double deAsin (double a) { return asin(a); } DE_INLINE double deAcos (double a) { return acos(a); } DE_INLINE double deAtan2 (double y, double x) { return atan2(y, x); } DE_INLINE double deAtanOver (double yOverX) { return atan(yOverX); } DE_INLINE double deSinh (double a) { return sinh(a); } DE_INLINE double deCosh (double a) { return cosh(a); } DE_INLINE double deTanh (double a) { return tanh(a); } DE_INLINE double deAsinh (double a) { return deLog(a + deSqrt(a*a + 1)); } DE_INLINE double deAcosh (double a) { return deLog(a + deSqrt(a*a - 1)); } DE_INLINE double deAtanh (double a) { return 0.5*deLog((1.0+a)/(1.0-a)); } /* Interpolation. */ DE_INLINE float deFloatMix (float a, float b, float t) { return a*(1.0f-t) + b*t; } DE_INLINE float deFloatStep (float limit, float val) { return (val < limit) ? 0.0f : 1.0f; } DE_INLINE float deFloatSmoothStep (float e0, float e1, float v) { float t; if (v <= e0) return 0.0f; if (v >= e1) return 1.0f; t = (v - e0) / (e1 - e0); return t * t * (3.0f - 2.0f * t); } DE_INLINE double deMix (double a, double b, double t) { return a*(1.0-t) + b*t; } DE_INLINE double deStep (double limit, double val) { return (val < limit) ? 0.0 : 1.0; } /* Comparison functions. */ DE_INLINE deBool deFloatCmpEQ (float a, float b) { return (a == b); } DE_INLINE deBool deFloatCmpNE (float a, float b) { return (a != b); } DE_INLINE deBool deFloatCmpLT (float a, float b) { return (a < b); } DE_INLINE deBool deFloatCmpLE (float a, float b) { return (a <= b); } DE_INLINE deBool deFloatCmpGT (float a, float b) { return (a > b); } DE_INLINE deBool deFloatCmpGE (float a, float b) { return (a >= b); } /* Convert int to float. If the value cannot be represented exactly in native single precision format, return * either the nearest lower or the nearest higher representable value, chosen in an implementation-defined manner. * * \note Choosing either nearest lower or nearest higher means that implementation could for example consistently * choose the lower value, i.e. this function does not round towards nearest. * \note Value returned is in native single precision format. For example with x86 extended precision, the value * returned might not be representable in IEEE single precision float. */ DE_INLINE float deInt32ToFloat (deInt32 x) { return (float)x; } /* Convert to float. If the value cannot be represented exactly in IEEE single precision floating point format, * return the nearest lower (round towards negative inf). */ float deInt32ToFloatRoundToNegInf (deInt32 x); /* Convert to float. If the value cannot be represented exactly IEEE single precision floating point format, * return the nearest higher (round towards positive inf). */ float deInt32ToFloatRoundToPosInf (deInt32 x); /* Conversion to integer. */ DE_INLINE deInt32 deChopFloatToInt32 (float x) { return (deInt32)x; } DE_INLINE deInt32 deFloorFloatToInt32 (float x) { return (deInt32)(deFloatFloor(x)); } DE_INLINE deInt32 deCeilFloatToInt32 (float x) { return (deInt32)(deFloatCeil(x)); } DE_INLINE deInt32 deChopToInt32 (double x) { return (deInt32)x; } DE_INLINE deInt32 deFloorToInt32 (double x) { return (deInt32)(deFloor(x)); } DE_INLINE deInt32 deCeilToInt32 (double x) { return (deInt32)(deCeil(x)); } /* Arithmetic round */ DE_INLINE deInt16 deRoundFloatToInt16 (float x) { if(x >= 0.0f) return (deInt16)(x + 0.5f); else return (deInt16)(x - 0.5f); } DE_INLINE deInt32 deRoundFloatToInt32 (float x) { if(x >= 0.0f) return (deInt32)(x + 0.5f); else return (deInt32)(x - 0.5f); } DE_INLINE deInt64 deRoundFloatToInt64 (float x) { if(x >= 0.0f) return (deInt64)(x + 0.5f); else return (deInt64)(x - 0.5f); } DE_INLINE deInt16 deRoundToInt16 (double x) { if(x >= 0.0) return (deInt16)(x + 0.5); else return (deInt16)(x - 0.5); } DE_INLINE deInt32 deRoundToInt32 (double x) { if(x >= 0.0) return (deInt32)(x + 0.5); else return (deInt32)(x - 0.5); } DE_INLINE deInt64 deRoundToInt64 (double x) { if(x >= 0.0) return (deInt64)(x + 0.5); else return (deInt64)(x - 0.5); } DE_END_EXTERN_C #endif /* _DEMATH_H */