summaryrefslogtreecommitdiff
path: root/LoopbackApp/app/src/main/jni/sles.cpp
blob: 159269b613d618793d0da820a6d296f22f1b80df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


// FIXME taken from OpenSLES_AndroidConfiguration.h
#define SL_ANDROID_KEY_PERFORMANCE_MODE  ((const SLchar*) "androidPerformanceMode")

////////////////////////////////////////////
/// Actual sles functions.


// Test program to record from default audio input and playback to default audio output.
// It will generate feedback (Larsen effect) if played through on-device speakers,
// or acts as a delay if played through headset.

#define _USE_MATH_DEFINES
#include <cmath>
#include "sles.h"
#include "audio_utils/atomic.h"
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>

int slesInit(sles_data ** ppSles, int samplingRate, int frameCount, int micSource,
             int performanceMode,
             int testType, double frequency1, char* byteBufferPtr, int byteBufferLength,
             short* loopbackTone, int maxRecordedLateCallbacks, int ignoreFirstFrames) {
    int status = SLES_FAIL;
    if (ppSles != NULL) {
        sles_data * pSles = (sles_data*) malloc(sizeof(sles_data));

        memset(pSles, 0, sizeof(sles_data));

        SLES_PRINTF("pSles malloc %zu bytes at %p", sizeof(sles_data), pSles);
        //__android_log_print(ANDROID_LOG_INFO, "sles_jni",
        //"malloc %d bytes at %p", sizeof(sles_data), pSles);//Or ANDROID_LOG_INFO, ...
        *ppSles = pSles;
        if (pSles != NULL)
        {
            SLES_PRINTF("creating server. Sampling rate =%d, frame count = %d",
                        samplingRate, frameCount);
            status = slesCreateServer(pSles, samplingRate, frameCount, micSource,
                                      performanceMode, testType,
                                      frequency1, byteBufferPtr, byteBufferLength, loopbackTone,
                                      maxRecordedLateCallbacks, ignoreFirstFrames);
            SLES_PRINTF("slesCreateServer =%d", status);
        }
    }

    return status;
}
int slesDestroy(sles_data ** ppSles) {
    int status = SLES_FAIL;
    if (ppSles != NULL) {
        slesDestroyServer(*ppSles);

        if (*ppSles != NULL)
        {
            SLES_PRINTF("free memory at %p",*ppSles);
            free(*ppSles);
            *ppSles = 0;
        }
        status = SLES_SUCCESS;
    }
    return status;
}

#define ASSERT_EQ(x, y) do { if ((x) == (y)) ; else { fprintf(stderr, "0x%x != 0x%x\n", \
    (unsigned) (x), (unsigned) (y)); assert((x) == (y)); } } while (0)

// Called after audio recorder fills a buffer with data, then we can read from this filled buffer
static void recorderCallback(SLAndroidSimpleBufferQueueItf caller __unused, void *context) {
    sles_data *pSles = (sles_data*) context;
    if (pSles != NULL) {
        collectBufferPeriod(&pSles->recorderBufferStats, NULL /*fdpStats*/, &pSles->recorderTimeStamps,
                            pSles->expectedBufferPeriod);

        //__android_log_print(ANDROID_LOG_INFO, "sles_jni", "in recorderCallback");
        SLresult result;

        //ee  SLES_PRINTF("<R");

        // We should only be called when a recording buffer is done
        assert(pSles->rxFront <= pSles->rxBufCount);
        assert(pSles->rxRear <= pSles->rxBufCount);
        assert(pSles->rxFront != pSles->rxRear);
        char *buffer = pSles->rxBuffers[pSles->rxFront]; //pSles->rxBuffers stores the data recorded


        // Remove buffer from record queue
        if (++pSles->rxFront > pSles->rxBufCount) {
            pSles->rxFront = 0;
        }

        if (pSles->testType == TEST_TYPE_LATENCY) {
            // Throw out first frames
            if (pSles->ignoreFirstFrames) {
                int framesToErase = pSles->ignoreFirstFrames;
                if (framesToErase > (int) pSles->bufSizeInFrames) {
                    framesToErase = pSles->bufSizeInFrames;
                }
                pSles->ignoreFirstFrames -= framesToErase;
                memset(buffer, 0, framesToErase * pSles->channels * sizeof(short));
            }

            ssize_t actual = audio_utils_fifo_write(&(pSles->fifo), buffer,
                    (size_t) pSles->bufSizeInFrames);

            if (actual != (ssize_t) pSles->bufSizeInFrames) {
                write(1, "?", 1);
            }

            // This is called by a realtime (SCHED_FIFO) thread,
            // and it is unsafe to do I/O as it could block for unbounded time.
            // Flash filesystem is especially notorious for blocking.
            if (pSles->fifo2Buffer != NULL) {
                actual = audio_utils_fifo_write(&(pSles->fifo2), buffer,
                        (size_t) pSles->bufSizeInFrames);
                if (actual != (ssize_t) pSles->bufSizeInFrames) {
                    write(1, "?", 1);
                }
            }
        } else if (pSles->testType == TEST_TYPE_BUFFER_PERIOD) {
            if (pSles->fifo2Buffer != NULL) {
                ssize_t actual = byteBuffer_write(pSles, buffer, (size_t) pSles->bufSizeInFrames);

                //FIXME should log errors using other methods instead of printing to terminal
                if (actual != (ssize_t) pSles->bufSizeInFrames) {
                    write(1, "?", 1);
                }
            }
        }


        // Enqueue this same buffer for the recorder to fill again.
        result = (*(pSles->recorderBufferQueue))->Enqueue(pSles->recorderBufferQueue, buffer,
                                                          pSles->bufSizeInBytes);
        //__android_log_print(ANDROID_LOG_INFO, "recorderCallback", "recorder buffer size: %i",
        //                    pSles->bufSizeInBytes);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);


        // Update our model of the record queue
        SLuint32 rxRearNext = pSles->rxRear + 1;
        if (rxRearNext > pSles->rxBufCount) {
            rxRearNext = 0;
        }
        assert(rxRearNext != pSles->rxFront);
        pSles->rxBuffers[pSles->rxRear] = buffer;
        pSles->rxRear = rxRearNext;



      //ee  SLES_PRINTF("r>");

    } //pSles not null
}


// Write "count" amount of short from buffer to pSles->byteBufferPtr. This byteBuffer will read by
// java code.
ssize_t byteBuffer_write(sles_data *pSles, char *buffer, size_t count) {
    // bytebufferSize is in byte
    int32_t rear; // rear should not exceed 2^31 - 1, or else overflow will happen
    memcpy(&rear, (char *) (pSles->byteBufferPtr + pSles->byteBufferLength - 4), sizeof(rear));

    size_t frameSize = pSles->channels * sizeof(short); // only one channel
    int32_t maxLengthInShort = (pSles->byteBufferLength - 4) / frameSize;
    // mask the upper bits to get the correct position in the pipe
    int32_t tempRear = rear & (maxLengthInShort - 1);
    size_t part1 = maxLengthInShort - tempRear;

    if (part1 > count) {
        part1 = count;
    }

    if (part1 > 0) {
        memcpy(pSles->byteBufferPtr + (tempRear * frameSize), buffer,
               part1 * frameSize);

        size_t part2 = count - part1;
        if (part2 > 0) {
            memcpy(pSles->byteBufferPtr, (buffer + (part1 * frameSize)),
                   part2 * frameSize);
        }

        //TODO do we need something similar to the below function call?
        //android_atomic_release_store(audio_utils_fifo_sum(fifo, fifo->mRear, availToWrite),
        //        &fifo->mRear);
    }

    // increase value of rear
    int32_t* rear2 = (int32_t *) (pSles->byteBufferPtr + pSles->byteBufferLength - 4);
    *rear2 += count;
    return count;
}

// Calculate nanosecond difference between two timespec structs from clock_gettime(CLOCK_MONOTONIC)
// tv_sec [0, max time_t] , tv_nsec [0, 999999999]
int64_t diffInNano(struct timespec previousTime, struct timespec currentTime) {
    return (int64_t) (currentTime.tv_sec - previousTime.tv_sec) * (int64_t) NANOS_PER_SECOND +
            currentTime.tv_nsec - previousTime.tv_nsec;
}

// Called after audio player empties a buffer of data
static void playerCallback(SLBufferQueueItf caller __unused, void *context) {
    sles_data *pSles = (sles_data*) context;
    if (pSles != NULL) {
        collectBufferPeriod(&pSles->playerBufferStats, &pSles->recorderBufferStats /*fdpStats*/,
                            &pSles->playerTimeStamps, pSles->expectedBufferPeriod);
        SLresult result;

        //ee  SLES_PRINTF("<P");

        // Get the buffer that just finished playing
        assert(pSles->txFront <= pSles->txBufCount);
        assert(pSles->txRear <= pSles->txBufCount);
        assert(pSles->txFront != pSles->txRear);
        char *buffer = pSles->txBuffers[pSles->txFront];
        if (++pSles->txFront > pSles->txBufCount) {
            pSles->txFront = 0;
        }

        if (pSles->testType == TEST_TYPE_LATENCY) {
            // Jitter buffer should have strictly less than 2 buffers worth of data in it.
            // This is to prevent the test itself from adding too much latency.
            size_t discardedInputFrames = 0;
            for (;;) {
                size_t availToRead = audio_utils_fifo_availToRead(&pSles->fifo);
                if (availToRead < pSles->bufSizeInFrames * 2) {
                    break;
                }
                ssize_t actual = audio_utils_fifo_read(&pSles->fifo, buffer, pSles->bufSizeInFrames);
                if (actual > 0) {
                    discardedInputFrames += actual;
                }
                if (actual != (ssize_t) pSles->bufSizeInFrames) {
                    break;
                }
            }
            if (discardedInputFrames > 0) {
                if (pSles->totalDiscardedInputFrames > 0) {
                    __android_log_print(ANDROID_LOG_WARN, "sles_jni",
                        "Discarded an additional %zu input frames after a total of %zu input frames"
                        " had previously been discarded",
                        discardedInputFrames, pSles->totalDiscardedInputFrames);
                }
                pSles->totalDiscardedInputFrames += discardedInputFrames;
            }

            ssize_t actual = audio_utils_fifo_read(&(pSles->fifo), buffer, pSles->bufSizeInFrames);
            if (actual != (ssize_t) pSles->bufSizeInFrames) {
                write(1, "/", 1);
                // on underrun from pipe, substitute silence
                memset(buffer, 0, pSles->bufSizeInFrames * pSles->channels * sizeof(short));
            }

            if (pSles->injectImpulse == -1) {   // here we inject pulse

                /*// Experimentally, a single frame impulse was insufficient to trigger feedback.
                // Also a Nyquist frequency signal was also insufficient, probably because
                // the response of output and/or input path was not adequate at high frequencies.
                // This short burst of a few cycles of square wave at Nyquist/4 found to work well.
                for (unsigned i = 0; i < pSles->bufSizeInFrames / 8; i += 8) {
                    for (int j = 0; j < 8; j++) {
                        for (unsigned k = 0; k < pSles->channels; k++) {
                            ((short *) buffer)[(i + j) * pSles->channels + k] =
                                                                            j < 4 ? 0x7FFF : 0x8000;
                        }
                    }
                }*/

                //inject java generated tone
                for (unsigned i = 0; i < pSles->bufSizeInFrames; ++i) {
                    for (unsigned k = 0; k < pSles->channels; ++k) {
                        ((short *) buffer)[i * pSles->channels + k] = pSles->loopbackTone[i];
                    }
                }

                pSles->injectImpulse = 0;
                pSles->totalDiscardedInputFrames = 0;
            }
        } else if (pSles->testType == TEST_TYPE_BUFFER_PERIOD) {
            double twoPi = M_PI * 2;
            int maxShort = 32767;
            float amplitude = 0.8;
            short value;
            double phaseIncrement = pSles->frequency1 / pSles->sampleRate;
            bool isGlitchEnabled = false;
            for (unsigned i = 0; i < pSles->bufSizeInFrames; i++) {
                value = (short) (sin(pSles->bufferTestPhase1) * maxShort * amplitude);
                for (unsigned k = 0; k < pSles->channels; ++k) {
                    ((short *) buffer)[i* pSles->channels + k] = value;
                }

                pSles->bufferTestPhase1 += twoPi * phaseIncrement;
                // insert glitches if isGlitchEnabled == true, and insert it for every second
                if (isGlitchEnabled && (pSles->count % pSles->sampleRate == 0)) {
                    pSles->bufferTestPhase1 += twoPi * phaseIncrement;
                }

                pSles->count++;

                while (pSles->bufferTestPhase1 > twoPi) {
                    pSles->bufferTestPhase1 -= twoPi;
                }
            }
        }

        // Enqueue the filled buffer for playing
        result = (*(pSles->playerBufferQueue))->Enqueue(pSles->playerBufferQueue, buffer,
                                                        pSles->bufSizeInBytes);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        // Update our model of the player queue
        assert(pSles->txFront <= pSles->txBufCount);
        assert(pSles->txRear <= pSles->txBufCount);
        SLuint32 txRearNext = pSles->txRear + 1;
        if (txRearNext > pSles->txBufCount) {
            txRearNext = 0;
        }
        assert(txRearNext != pSles->txFront);
        pSles->txBuffers[pSles->txRear] = buffer;
        pSles->txRear = txRearNext;

    } //pSles not null
}

// Used to set initial values for the bufferStats struct before values can be recorded.
void initBufferStats(bufferStats *stats) {
    stats->buffer_period = new int[RANGE](); // initialized to zeros
    stats->previous_time = {0,0};
    stats->current_time = {0,0};

    stats->buffer_count = 0;
    stats->max_buffer_period = 0;

    stats->measurement_count = 0;
    stats->SDM = 0;
    stats->var = 0;
}

// Called in the beginning of playerCallback() to collect the interval between each callback.
// fdpStats is either NULL or a pointer to the buffer statistics for the full-duplex partner.
void collectBufferPeriod(bufferStats *stats, bufferStats *fdpStats, callbackTimeStamps *timeStamps,
                         short expectedBufferPeriod) {
    clock_gettime(CLOCK_MONOTONIC, &(stats->current_time));

    if (timeStamps->startTime.tv_sec == 0 && timeStamps->startTime.tv_nsec == 0) {
        timeStamps->startTime = stats->current_time;
    }

    (stats->buffer_count)++;

    if (stats->previous_time.tv_sec != 0 && stats->buffer_count > BUFFER_PERIOD_DISCARD &&
         (fdpStats == NULL || fdpStats->buffer_count > BUFFER_PERIOD_DISCARD_FULL_DUPLEX_PARTNER)) {

        int64_t callbackDuration = diffInNano(stats->previous_time, stats->current_time);

        bool outlier = updateBufferStats(stats, callbackDuration, expectedBufferPeriod);

        //recording timestamps of buffer periods not at expected buffer period
        if (outlier) {
            int64_t timeStamp = diffInNano(timeStamps->startTime, stats->current_time);
            recordTimeStamp(timeStamps, callbackDuration, timeStamp);
        }
    }

    stats->previous_time = stats->current_time;
}

// Records an outlier given the duration in nanoseconds and the number of nanoseconds
// between it and the start of the test.
void recordTimeStamp(callbackTimeStamps *timeStamps,
                     int64_t callbackDuration, int64_t timeStamp) {
    if (timeStamps->exceededCapacity) {
        return;
    }

    //only marked as exceeded if attempting to record a late callback after arrays full
    if (timeStamps->index == timeStamps->capacity){
        timeStamps->exceededCapacity = true;
    } else {
        timeStamps->callbackDurations[timeStamps->index] =
                (short) ((callbackDuration + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI);
        timeStamps->timeStampsMs[timeStamps->index] =
                (int) ((timeStamp + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI);
        timeStamps->index++;
    }
}

void atomicSetIfGreater(volatile int32_t *addr, int32_t val) {
    // TODO: rewrite this to avoid the need for unbounded spinning
    int32_t old;
    do {
        old = *addr;
        if (val < old) return;
    } while(!android_atomic_compare_exchange(&old, val, addr));
}

// Updates the stats being collected about buffer periods. Returns true if this is an outlier.
bool updateBufferStats(bufferStats *stats, int64_t diff_in_nano, int expectedBufferPeriod) {
    stats->measurement_count++;

    // round up to nearest millisecond
    int diff_in_milli = (int) ((diff_in_nano + NANOS_PER_MILLI - 1) / NANOS_PER_MILLI);

    if (diff_in_milli > stats->max_buffer_period) {
        stats->max_buffer_period = diff_in_milli;
    }

    // from 0 ms to 1000 ms, plus a sum of all instances > 1000ms
    if (diff_in_milli >= (RANGE - 1)) {
        (stats->buffer_period)[RANGE-1]++;
    } else if (diff_in_milli >= 0) {
        (stats->buffer_period)[diff_in_milli]++;
    } else { // for diff_in_milli < 0
        __android_log_print(ANDROID_LOG_INFO, "sles_player", "Having negative BufferPeriod.");
    }

    int64_t delta = diff_in_nano - (int64_t) expectedBufferPeriod * NANOS_PER_MILLI;
    stats->SDM += delta * delta;
    if (stats->measurement_count > 1) {
        stats->var = stats->SDM / stats->measurement_count;
    }

    // check if the lateness is so bad that a systrace should be captured
    // TODO: replace static threshold of lateness with a dynamic determination
    if (diff_in_milli > expectedBufferPeriod + LATE_CALLBACK_CAPTURE_THRESHOLD) {
        // TODO: log in a non-blocking way
        //__android_log_print(ANDROID_LOG_INFO, "buffer_stats", "Callback late by %d ms",
        //                    diff_in_milli - expectedBufferPeriod);
        atomicSetIfGreater(&(stats->captureRank), diff_in_milli - expectedBufferPeriod);
    }
    return diff_in_milli > expectedBufferPeriod + LATE_CALLBACK_OUTLIER_THRESHOLD;
}

int slesCreateServer(sles_data *pSles, int samplingRate, int frameCount, int micSource,
                     int performanceMode,
                     int testType, double frequency1, char *byteBufferPtr, int byteBufferLength,
                     short *loopbackTone, int maxRecordedLateCallbacks, int ignoreFirstFrames) {
    int status = SLES_FAIL;

    if (pSles != NULL) {

        //        adb shell slesTest_feedback -r1 -t1 -s48000 -f240 -i300 -e3 -o/sdcard/log.wav
        //            r1 and t1 are the receive and transmit buffer counts, typically 1
        //            s is the sample rate, typically 48000 or 44100
        //            f is the frame count per buffer, typically 240 or 256
        //            i is the number of milliseconds before impulse.  You may need to adjust this.
        //            e is number of seconds to record
        //            o is output .wav file name


        //        // default values
        //        SLuint32 rxBufCount = 1;     // -r#
        //        SLuint32 txBufCount = 1;     // -t#
        //        SLuint32 bufSizeInFrames = 240;  // -f#
        //        SLuint32 channels = 1;       // -c#
        //        SLuint32 sampleRate = 48000; // -s#
        //        SLuint32 exitAfterSeconds = 3; // -e#
        //        SLuint32 freeBufCount = 0;   // calculated
        //        SLuint32 bufSizeInBytes = 0; // calculated
        //        int injectImpulse = 300; // -i#i
        //
        //        // Storage area for the buffer queues
        //        char **rxBuffers;
        //        char **txBuffers;
        //        char **freeBuffers;
        //
        //        // Buffer indices
        //        SLuint32 rxFront;    // oldest recording
        //        SLuint32 rxRear;     // next to be recorded
        //        SLuint32 txFront;    // oldest playing
        //        SLuint32 txRear;     // next to be played
        //        SLuint32 freeFront;  // oldest free
        //        SLuint32 freeRear;   // next to be freed
        //
        //        audio_utils_fifo fifo; //(*)
        //        SLAndroidSimpleBufferQueueItf recorderBufferQueue;
        //        SLBufferQueueItf playerBufferQueue;

        // default values
        pSles->rxBufCount = 1;     // -r#
        pSles->txBufCount = 1;     // -t#
        pSles->bufSizeInFrames = frameCount;//240;  // -f#
        pSles->channels = 1;       // -c#
        pSles->sampleRate = samplingRate;//48000; // -s#
        pSles->exitAfterSeconds = 3; // -e#
        pSles->freeBufCount = 0;   // calculated
        pSles->bufSizeInBytes = 0; // calculated
        pSles->injectImpulse = 300; // -i#i
        pSles->totalDiscardedInputFrames = 0;
        pSles->ignoreFirstFrames = ignoreFirstFrames;

        // Storage area for the buffer queues
        //        char **rxBuffers;
        //        char **txBuffers;
        //        char **freeBuffers;

        // Buffer indices
        pSles->rxFront;    // oldest recording
        pSles->rxRear;     // next to be recorded
        pSles->txFront;    // oldest playing
        pSles->txRear;     // next to be played
        pSles->freeFront;  // oldest free
        pSles->freeRear;   // next to be freed

        pSles->fifo; //(*)
        pSles->fifo2Buffer = NULL;  //this fifo is for sending data to java code (to plot it)
        pSles->recorderBufferQueue;
        pSles->playerBufferQueue;



        // compute total free buffers as -r plus -t
        pSles->freeBufCount = pSles->rxBufCount + pSles->txBufCount;
        // compute buffer size
        pSles->bufSizeInBytes = pSles->channels * pSles->bufSizeInFrames * sizeof(short);

        // Initialize free buffers
        pSles->freeBuffers = (char **) calloc(pSles->freeBufCount + 1, sizeof(char *));
        SLES_PRINTF("  calloc freeBuffers %zu bytes at %p",pSles->freeBufCount + 1,
                    pSles->freeBuffers);
        unsigned j;
        for (j = 0; j < pSles->freeBufCount; ++j) {
            pSles->freeBuffers[j] = (char *) malloc(pSles->bufSizeInBytes);
            SLES_PRINTF(" buff%d malloc %zu bytes at %p",j, pSles->bufSizeInBytes,
                        pSles->freeBuffers[j]);
        }
        pSles->freeFront = 0;
        pSles->freeRear = pSles->freeBufCount;
        pSles->freeBuffers[j] = NULL;

        // Initialize record queue
        pSles->rxBuffers = (char **) calloc(pSles->rxBufCount + 1, sizeof(char *));
        SLES_PRINTF("  calloc rxBuffers %zu bytes at %p",pSles->rxBufCount + 1, pSles->rxBuffers);
        pSles->rxFront = 0;
        pSles->rxRear = 0;

        // Initialize play queue
        pSles->txBuffers = (char **) calloc(pSles->txBufCount + 1, sizeof(char *));
        SLES_PRINTF("  calloc txBuffers %zu bytes at %p",pSles->txBufCount + 1, pSles->txBuffers);
        pSles->txFront = 0;
        pSles->txRear = 0;

        size_t frameSize = pSles->channels * sizeof(short);
#define FIFO_FRAMES 1024
        pSles->fifoBuffer = new short[FIFO_FRAMES * pSles->channels];
        audio_utils_fifo_init(&(pSles->fifo), FIFO_FRAMES, frameSize, pSles->fifoBuffer);

        //        SNDFILE *sndfile;
        //        if (outFileName != NULL) {
        // create .wav writer
        //            SF_INFO info;
        //            info.frames = 0;
        //            info.samplerate = sampleRate;
        //            info.channels = channels;
        //            info.format = SF_FORMAT_WAV | SF_FORMAT_PCM_16;
        //            sndfile = sf_open(outFileName, SFM_WRITE, &info);
        //            if (sndfile != NULL) {
#define FIFO2_FRAMES 65536
        pSles->fifo2Buffer = new short[FIFO2_FRAMES * pSles->channels];
        audio_utils_fifo_init(&(pSles->fifo2), FIFO2_FRAMES, frameSize, pSles->fifo2Buffer);
        //            } else {
        //                fprintf(stderr, "sf_open failed\n");
        //            }
        //        } else {
        //            sndfile = NULL;
        //        }

        initBufferStats(&pSles->recorderBufferStats);
        initBufferStats(&pSles->playerBufferStats);

        // init other variables needed for buffer test
        pSles->testType = testType;
        pSles->frequency1 = frequency1;
        pSles->bufferTestPhase1 = 0;
        pSles->count = 0;
        pSles->byteBufferPtr = byteBufferPtr;
        pSles->byteBufferLength = byteBufferLength;

        //init loopback tone
        pSles->loopbackTone = loopbackTone;

        pSles->recorderTimeStamps = {
            new int[maxRecordedLateCallbacks],      //int* timeStampsMs
            new short[maxRecordedLateCallbacks],    //short* callbackDurations
            0,                                      //short index
            {0,0},                                  //struct timespec startTime;
            maxRecordedLateCallbacks,               //int capacity
            false                                   //bool exceededCapacity
        };

        pSles->playerTimeStamps = {
            new int[maxRecordedLateCallbacks],      //int* timeStampsMs
            new short[maxRecordedLateCallbacks],    //short* callbackDurations;
            0,                                      //short index
            {0,0},                                  //struct timespec startTime;
            maxRecordedLateCallbacks,               //int capacity
            false                                   //bool exceededCapacity
        };

        pSles->expectedBufferPeriod = (short) (
                round(pSles->bufSizeInFrames * MILLIS_PER_SECOND / (float) pSles->sampleRate));

        SLresult result;

        // create engine
        pSles->engineObject;
        result = slCreateEngine(&(pSles->engineObject), 0, NULL, 0, NULL, NULL);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        result = (*(pSles->engineObject))->Realize(pSles->engineObject, SL_BOOLEAN_FALSE);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        SLEngineItf engineEngine;
        result = (*(pSles->engineObject))->GetInterface(pSles->engineObject, SL_IID_ENGINE,
                &engineEngine);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        // create output mix
        pSles->outputmixObject;
        result = (*engineEngine)->CreateOutputMix(engineEngine, &(pSles->outputmixObject), 0, NULL,
                NULL);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        result = (*(pSles->outputmixObject))->Realize(pSles->outputmixObject, SL_BOOLEAN_FALSE);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        // create an audio player with buffer queue source and output mix sink
        SLDataSource audiosrc;
        SLDataSink audiosnk;
        SLDataFormat_PCM pcm;
        SLDataLocator_OutputMix locator_outputmix;
        SLDataLocator_BufferQueue locator_bufferqueue_tx;
        locator_bufferqueue_tx.locatorType = SL_DATALOCATOR_BUFFERQUEUE;
        locator_bufferqueue_tx.numBuffers = pSles->txBufCount;
        locator_outputmix.locatorType = SL_DATALOCATOR_OUTPUTMIX;
        locator_outputmix.outputMix = pSles->outputmixObject;
        pcm.formatType = SL_DATAFORMAT_PCM;
        pcm.numChannels = pSles->channels;
        pcm.samplesPerSec = pSles->sampleRate * 1000;
        pcm.bitsPerSample = SL_PCMSAMPLEFORMAT_FIXED_16;
        pcm.containerSize = 16;
        pcm.channelMask = pSles->channels == 1 ? SL_SPEAKER_FRONT_CENTER :
                (SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT);
        pcm.endianness = SL_BYTEORDER_LITTLEENDIAN;
        audiosrc.pLocator = &locator_bufferqueue_tx;
        audiosrc.pFormat = &pcm;
        audiosnk.pLocator = &locator_outputmix;
        audiosnk.pFormat = NULL;
        pSles->playerObject = NULL;
        pSles->recorderObject = NULL;
        SLInterfaceID ids_tx[2] = {SL_IID_BUFFERQUEUE, SL_IID_ANDROIDCONFIGURATION};
        SLboolean flags_tx[2] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};
        result = (*engineEngine)->CreateAudioPlayer(engineEngine, &(pSles->playerObject),
                &audiosrc, &audiosnk, 2, ids_tx, flags_tx);
        if (SL_RESULT_CONTENT_UNSUPPORTED == result) {
            fprintf(stderr, "Could not create audio player (result %x), check sample rate\n",
                    result);
            SLES_PRINTF("ERROR: Could not create audio player (result %x), check sample rate\n",
                                                     result);
            goto cleanup;
        }
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        {
           /* Get the Android configuration interface which is explicit */
            SLAndroidConfigurationItf configItf;
            result = (*(pSles->playerObject))->GetInterface(pSles->playerObject,
                                                 SL_IID_ANDROIDCONFIGURATION, (void*)&configItf);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);

            /* Use the configuration interface to configure the player before it's realized */
            if (performanceMode != -1) {
                SLuint32 performanceMode32 = performanceMode;
                result = (*configItf)->SetConfiguration(configItf, SL_ANDROID_KEY_PERFORMANCE_MODE,
                        &performanceMode32, sizeof(SLuint32));
                ASSERT_EQ(SL_RESULT_SUCCESS, result);
            }

        }

        result = (*(pSles->playerObject))->Realize(pSles->playerObject, SL_BOOLEAN_FALSE);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        SLPlayItf playerPlay;
        result = (*(pSles->playerObject))->GetInterface(pSles->playerObject, SL_IID_PLAY,
                &playerPlay);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        result = (*(pSles->playerObject))->GetInterface(pSles->playerObject, SL_IID_BUFFERQUEUE,
                &(pSles->playerBufferQueue));
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        result = (*(pSles->playerBufferQueue))->RegisterCallback(pSles->playerBufferQueue,
                playerCallback, pSles); //playerCallback is the name of callback function
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        // Enqueue some zero buffers for the player
        for (j = 0; j < pSles->txBufCount; ++j) {

            // allocate a free buffer
            assert(pSles->freeFront != pSles->freeRear);
            char *buffer = pSles->freeBuffers[pSles->freeFront];
            if (++pSles->freeFront > pSles->freeBufCount) {
                pSles->freeFront = 0;
            }

            // put on play queue
            SLuint32 txRearNext = pSles->txRear + 1;
            if (txRearNext > pSles->txBufCount) {
                txRearNext = 0;
            }
            assert(txRearNext != pSles->txFront);
            pSles->txBuffers[pSles->txRear] = buffer;
            pSles->txRear = txRearNext;
            result = (*(pSles->playerBufferQueue))->Enqueue(pSles->playerBufferQueue,
                    buffer, pSles->bufSizeInBytes);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);
        }

        result = (*playerPlay)->SetPlayState(playerPlay, SL_PLAYSTATE_PLAYING);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        // Create an audio recorder with microphone device source and buffer queue sink.
        // The buffer queue as sink is an Android-specific extension.
        SLDataLocator_IODevice locator_iodevice;
        SLDataLocator_AndroidSimpleBufferQueue locator_bufferqueue_rx;

        locator_iodevice.locatorType = SL_DATALOCATOR_IODEVICE;
        locator_iodevice.deviceType = SL_IODEVICE_AUDIOINPUT;
        locator_iodevice.deviceID = SL_DEFAULTDEVICEID_AUDIOINPUT;
        locator_iodevice.device = NULL;

        audiosrc.pLocator = &locator_iodevice;
        audiosrc.pFormat = NULL;

        locator_bufferqueue_rx.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
        locator_bufferqueue_rx.numBuffers = pSles->rxBufCount;

        audiosnk.pLocator = &locator_bufferqueue_rx;
        audiosnk.pFormat = &pcm;

        {   //why brackets here?
            SLInterfaceID ids_rx[2] = {SL_IID_ANDROIDSIMPLEBUFFERQUEUE,
                                       SL_IID_ANDROIDCONFIGURATION};
            SLboolean flags_rx[2] = {SL_BOOLEAN_TRUE, SL_BOOLEAN_TRUE};
            result = (*engineEngine)->CreateAudioRecorder(engineEngine, &(pSles->recorderObject),
                    &audiosrc, &audiosnk, 2, ids_rx, flags_rx);
            if (SL_RESULT_SUCCESS != result) {
                fprintf(stderr, "Could not create audio recorder (result %x), "
                        "check sample rate and channel count\n", result);
                status = SLES_FAIL;

                SLES_PRINTF("ERROR: Could not create audio recorder (result %x), "
                             "check sample rate and channel count\n", result);
                goto cleanup;
            }
        }
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        {
           /* Get the Android configuration interface which is explicit */
            SLAndroidConfigurationItf configItf;
            result = (*(pSles->recorderObject))->GetInterface(pSles->recorderObject,
                                                 SL_IID_ANDROIDCONFIGURATION, (void*)&configItf);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);

            SLuint32 presetValue = micSource;
            //SL_ANDROID_RECORDING_PRESET_CAMCORDER;//SL_ANDROID_RECORDING_PRESET_NONE;

            /* Use the configuration interface to configure the recorder before it's realized */
            if (presetValue != SL_ANDROID_RECORDING_PRESET_NONE) {
                result = (*configItf)->SetConfiguration(configItf, SL_ANDROID_KEY_RECORDING_PRESET,
                        &presetValue, sizeof(SLuint32));
                ASSERT_EQ(SL_RESULT_SUCCESS, result);
            }
            if (performanceMode != -1) {
                SLuint32 performanceMode32 = performanceMode;
                result = (*configItf)->SetConfiguration(configItf, SL_ANDROID_KEY_PERFORMANCE_MODE,
                        &performanceMode32, sizeof(SLuint32));
                ASSERT_EQ(SL_RESULT_SUCCESS, result);
            }

        }

        result = (*(pSles->recorderObject))->Realize(pSles->recorderObject, SL_BOOLEAN_FALSE);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        SLRecordItf recorderRecord;
        result = (*(pSles->recorderObject))->GetInterface(pSles->recorderObject, SL_IID_RECORD,
                &recorderRecord);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        result = (*(pSles->recorderObject))->GetInterface(pSles->recorderObject,
                SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &(pSles->recorderBufferQueue));
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        result = (*(pSles->recorderBufferQueue))->RegisterCallback(pSles->recorderBufferQueue,
                recorderCallback, pSles);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        // Enqueue some empty buffers for the recorder
        for (j = 0; j < pSles->rxBufCount; ++j) {

            // allocate a free buffer
            assert(pSles->freeFront != pSles->freeRear);
            char *buffer = pSles->freeBuffers[pSles->freeFront];
            if (++pSles->freeFront > pSles->freeBufCount) {
                pSles->freeFront = 0;
            }

            // put on record queue
            SLuint32 rxRearNext = pSles->rxRear + 1;
            if (rxRearNext > pSles->rxBufCount) {
                rxRearNext = 0;
            }
            assert(rxRearNext != pSles->rxFront);
            pSles->rxBuffers[pSles->rxRear] = buffer;
            pSles->rxRear = rxRearNext;
            result = (*(pSles->recorderBufferQueue))->Enqueue(pSles->recorderBufferQueue,
                    buffer, pSles->bufSizeInBytes);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);
        }

        // Kick off the recorder
        result = (*recorderRecord)->SetRecordState(recorderRecord, SL_RECORDSTATE_RECORDING);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);



        // Tear down the objects and exit
        status = SLES_SUCCESS;
        cleanup:

        SLES_PRINTF("Finished initialization with status: %d", status);

        int xx = 1;

    }
    return status;
}

// Read data from fifo2Buffer and store into pSamples.
int slesProcessNext(sles_data *pSles, double *pSamples, long maxSamples) {
    //int status = SLES_FAIL;

    SLES_PRINTF("slesProcessNext: pSles = %p, currentSample: %p,  maxSamples = %ld",
                pSles, pSamples, maxSamples);

    int samplesRead = 0;

    int currentSample = 0;
    double *pCurrentSample = pSamples;
    int maxValue = 32768;

    if (pSles != NULL) {

        SLresult result;
        for (int i = 0; i < 10; i++) {
            usleep(100000);         // sleep for 0.1s
            if (pSles->fifo2Buffer != NULL) {
                for (;;) {
                    short buffer[pSles->bufSizeInFrames * pSles->channels];
                    ssize_t actual = audio_utils_fifo_read(&(pSles->fifo2), buffer,
                            pSles->bufSizeInFrames);
                    if (actual <= 0)
                        break;
                    {
                        for (int jj = 0; jj < actual && currentSample < maxSamples; jj++) {
                            *(pCurrentSample++) = ((double) buffer[jj]) / maxValue;
                            currentSample++;
                        }
                    }
                    samplesRead += actual;
                }
            }
            if (pSles->injectImpulse > 0) {
                if (pSles->injectImpulse <= 100) {
                    pSles->injectImpulse = -1;
                    write(1, "I", 1);
                } else {
                    if ((pSles->injectImpulse % 1000) < 100) {
                        write(1, "i", 1);
                    }
                    pSles->injectImpulse -= 100;
                }
            } else if (i == 9) {
                write(1, ".", 1);
            }
        }
        SLBufferQueueState playerBQState;
        result = (*(pSles->playerBufferQueue))->GetState(pSles->playerBufferQueue,
                  &playerBQState);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);
        SLAndroidSimpleBufferQueueState recorderBQState;
        result = (*(pSles->recorderBufferQueue))->GetState(pSles->recorderBufferQueue,
                  &recorderBQState);
        ASSERT_EQ(SL_RESULT_SUCCESS, result);

        SLES_PRINTF("End of slesProcessNext: pSles = %p, samplesRead = %d, maxSamples = %ld",
                    pSles, samplesRead, maxSamples);
    }
    return samplesRead;
}


int slesDestroyServer(sles_data *pSles) {
    int status = SLES_FAIL;

     SLES_PRINTF("Start slesDestroyServer: pSles = %p", pSles);

    if (pSles != NULL) {
        if (NULL != pSles->playerObject) {
            SLES_PRINTF("stopping player...");
            SLPlayItf playerPlay;
            SLresult result = (*(pSles->playerObject))->GetInterface(pSles->playerObject,
                                                        SL_IID_PLAY, &playerPlay);

            ASSERT_EQ(SL_RESULT_SUCCESS, result);

            //stop player and recorder if they exist
             result = (*playerPlay)->SetPlayState(playerPlay, SL_PLAYSTATE_STOPPED);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);
        }

        if (NULL != pSles->recorderObject) {
            SLES_PRINTF("stopping recorder...");
            SLRecordItf recorderRecord;
            SLresult result = (*(pSles->recorderObject))->GetInterface(pSles->recorderObject,
                                                          SL_IID_RECORD, &recorderRecord);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);

            result = (*recorderRecord)->SetRecordState(recorderRecord, SL_RECORDSTATE_STOPPED);
            ASSERT_EQ(SL_RESULT_SUCCESS, result);
        }

        usleep(1000);

        audio_utils_fifo_deinit(&(pSles->fifo));
        delete[] pSles->fifoBuffer;

        SLES_PRINTF("slesDestroyServer 2");

        //        if (sndfile != NULL) {
        audio_utils_fifo_deinit(&(pSles->fifo2));
        delete[] pSles->fifo2Buffer;

        SLES_PRINTF("slesDestroyServer 3");

        //            sf_close(sndfile);
        //        }
        if (NULL != pSles->playerObject) {
            (*(pSles->playerObject))->Destroy(pSles->playerObject);
        }

        SLES_PRINTF("slesDestroyServer 4");

        if (NULL != pSles->recorderObject) {
            (*(pSles->recorderObject))->Destroy(pSles->recorderObject);
        }

        SLES_PRINTF("slesDestroyServer 5");

        (*(pSles->outputmixObject))->Destroy(pSles->outputmixObject);
        SLES_PRINTF("slesDestroyServer 6");
        (*(pSles->engineObject))->Destroy(pSles->engineObject);
        SLES_PRINTF("slesDestroyServer 7");

        //free buffers
        if (NULL != pSles->freeBuffers) {
            for (unsigned j = 0; j < pSles->freeBufCount; ++j) {
                if (NULL != pSles->freeBuffers[j]) {
                    SLES_PRINTF(" free buff%d at %p",j, pSles->freeBuffers[j]);
                    free (pSles->freeBuffers[j]);
                }
            }
            SLES_PRINTF("  free freeBuffers at %p", pSles->freeBuffers);
            free(pSles->freeBuffers);
        } else {
            SLES_PRINTF("  freeBuffers NULL, no need to free");
        }


        if (NULL != pSles->rxBuffers) {
            SLES_PRINTF("  free rxBuffers at %p", pSles->rxBuffers);
            free(pSles->rxBuffers);
        } else {
            SLES_PRINTF("  rxBuffers NULL, no need to free");
        }

        if (NULL != pSles->txBuffers) {
            SLES_PRINTF("  free txBuffers at %p", pSles->txBuffers);
            free(pSles->txBuffers);
        } else {
            SLES_PRINTF("  txBuffers NULL, no need to free");
        }


        status = SLES_SUCCESS;
    }
    SLES_PRINTF("End slesDestroyServer: status = %d", status);
    return status;
}


int* slesGetRecorderBufferPeriod(sles_data *pSles) {
    return pSles->recorderBufferStats.buffer_period;
}

int slesGetRecorderMaxBufferPeriod(sles_data *pSles) {
    return pSles->recorderBufferStats.max_buffer_period;
}

int64_t slesGetRecorderVarianceBufferPeriod(sles_data *pSles) {
    return pSles->recorderBufferStats.var;
}

int* slesGetPlayerBufferPeriod(sles_data *pSles) {
    return pSles->playerBufferStats.buffer_period;
}

int slesGetPlayerMaxBufferPeriod(sles_data *pSles) {
    return pSles->playerBufferStats.max_buffer_period;
}

int64_t slesGetPlayerVarianceBufferPeriod(sles_data *pSles) {
    return pSles->playerBufferStats.var;
}

int slesGetCaptureRank(sles_data *pSles) {
    // clear the capture flags since they're being handled now
    int recorderRank = android_atomic_exchange(0, &pSles->recorderBufferStats.captureRank);
    int playerRank = android_atomic_exchange(0, &pSles->playerBufferStats.captureRank);

    if (recorderRank > playerRank) {
        return recorderRank;
    } else {
        return playerRank;
    }
}