summaryrefslogtreecommitdiff
path: root/internal/strings/numbers.cc
blob: b85ed8e455506f61719e9b33aa4cf22c0f33b10c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#include "strings/numbers.h"

#include <float.h>  // for FLT_DIG
#include <cassert>
#include <memory>

#include "strings/ascii_ctype.h"

namespace dynamic_depth {
namespace strings {
namespace {

// Represents integer values of digits.
// Uses 36 to indicate an invalid character since we support
// bases up to 36.
static const int8 kAsciiToInt[256] = {
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,  // 16 36s.
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0,  1,  2,  3,  4,  5,
    6,  7,  8,  9,  36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
    18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
    36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
    24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
    36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};

// Parse the sign and optional hex or oct prefix in text.
inline bool safe_parse_sign_and_base(string* text /*inout*/,
                                     int* base_ptr /*inout*/,
                                     bool* negative_ptr /*output*/) {
  if (text->data() == NULL) {
    return false;
  }

  const char* start = text->data();
  const char* end = start + text->size();
  int base = *base_ptr;

  // Consume whitespace.
  while (start < end && ascii_isspace(start[0])) {
    ++start;
  }
  while (start < end && ascii_isspace(end[-1])) {
    --end;
  }
  if (start >= end) {
    return false;
  }

  // Consume sign.
  *negative_ptr = (start[0] == '-');
  if (*negative_ptr || start[0] == '+') {
    ++start;
    if (start >= end) {
      return false;
    }
  }

  // Consume base-dependent prefix.
  //  base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
  //  base 16: "0x" -> base 16
  // Also validate the base.
  if (base == 0) {
    if (end - start >= 2 && start[0] == '0' &&
        (start[1] == 'x' || start[1] == 'X')) {
      base = 16;
      start += 2;
      if (start >= end) {
        // "0x" with no digits after is invalid.
        return false;
      }
    } else if (end - start >= 1 && start[0] == '0') {
      base = 8;
      start += 1;
    } else {
      base = 10;
    }
  } else if (base == 16) {
    if (end - start >= 2 && start[0] == '0' &&
        (start[1] == 'x' || start[1] == 'X')) {
      start += 2;
      if (start >= end) {
        // "0x" with no digits after is invalid.
        return false;
      }
    }
  } else if (base >= 2 && base <= 36) {
    // okay
  } else {
    return false;
  }
  text->assign(start, end - start);
  *base_ptr = base;
  return true;
}

// Consume digits.
//
// The classic loop:
//
//   for each digit
//     value = value * base + digit
//   value *= sign
//
// The classic loop needs overflow checking.  It also fails on the most
// negative integer, -2147483648 in 32-bit two's complement representation.
//
// My improved loop:
//
//  if (!negative)
//    for each digit
//      value = value * base
//      value = value + digit
//  else
//    for each digit
//      value = value * base
//      value = value - digit
//
// Overflow checking becomes simple.

// Lookup tables per IntType:
// vmax/base and vmin/base are precomputed because division costs at least 8ns.
// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
// struct of arrays) would probably be better in terms of d-cache for the most
// commonly used bases.
template <typename IntType>
struct LookupTables {
  static const IntType kVmaxOverBase[];
  static const IntType kVminOverBase[];
};

// An array initializer macro for X/base where base in [0, 36].
// However, note that lookups for base in [0, 1] should never happen because
// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
#define X_OVER_BASE_INITIALIZER(X)                                    \
  {                                                                   \
      0,      0,      X / 2,  X / 3,  X / 4,  X / 5,  X / 6,  X / 7,  \
      X / 8,  X / 9,  X / 10, X / 11, X / 12, X / 13, X / 14, X / 15, \
      X / 16, X / 17, X / 18, X / 19, X / 20, X / 21, X / 22, X / 23, \
      X / 24, X / 25, X / 26, X / 27, X / 28, X / 29, X / 30, X / 31, \
      X / 32, X / 33, X / 34, X / 35, X / 36,                         \
  };

template <typename IntType>
const IntType LookupTables<IntType>::kVmaxOverBase[] =
    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());

template <typename IntType>
const IntType LookupTables<IntType>::kVminOverBase[] =
    X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());

#undef X_OVER_BASE_INITIALIZER

template <typename IntType>
inline bool safe_parse_positive_int(const string& text, int base,
                                    IntType* value_p) {
  IntType value = 0;
  const IntType vmax = std::numeric_limits<IntType>::max();
  assert(vmax > 0);
  assert(vmax >= base);
  const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
  const char* start = text.data();
  const char* end = start + text.size();
  // loop over digits
  for (; start < end; ++start) {
    unsigned char c = static_cast<unsigned char>(start[0]);
    int digit = kAsciiToInt[c];
    if (digit >= base) {
      *value_p = value;
      return false;
    }
    if (value > vmax_over_base) {
      *value_p = vmax;
      return false;
    }
    value *= base;
    if (value > vmax - digit) {
      *value_p = vmax;
      return false;
    }
    value += digit;
  }
  *value_p = value;
  return true;
}

template <typename IntType>
inline bool safe_parse_negative_int(const string& text, int base,
                                    IntType* value_p) {
  IntType value = 0;
  const IntType vmin = std::numeric_limits<IntType>::min();
  assert(vmin < 0);
  assert(vmin <= 0 - base);
  IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
  // 2003 c++ standard [expr.mul]
  // "... the sign of the remainder is implementation-defined."
  // Although (vmin/base)*base + vmin%base is always vmin.
  // 2011 c++ standard tightens the spec but we cannot rely on it.
  // TODO(junyer): Handle this in the lookup table generation.
  if (vmin % base > 0) {
    vmin_over_base += 1;
  }
  const char* start = text.data();
  const char* end = start + text.size();
  // loop over digits
  for (; start < end; ++start) {
    unsigned char c = static_cast<unsigned char>(start[0]);
    int digit = kAsciiToInt[c];
    if (digit >= base) {
      *value_p = value;
      return false;
    }
    if (value < vmin_over_base) {
      *value_p = vmin;
      return false;
    }
    value *= base;
    if (value < vmin + digit) {
      *value_p = vmin;
      return false;
    }
    value -= digit;
  }
  *value_p = value;
  return true;
}

// Input format based on POSIX.1-2008 strtol
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
template <typename IntType>
inline bool safe_int_internal(const string& text, IntType* value_p, int base) {
  *value_p = 0;
  bool negative;
  string text_copy(text);
  if (!safe_parse_sign_and_base(&text_copy, &base, &negative)) {
    return false;
  }
  if (!negative) {
    return safe_parse_positive_int(text_copy, base, value_p);
  } else {
    return safe_parse_negative_int(text_copy, base, value_p);
  }
}

template <typename IntType>
inline bool safe_uint_internal(const string& text, IntType* value_p, int base) {
  *value_p = 0;
  bool negative;
  string text_copy(text);
  if (!safe_parse_sign_and_base(&text_copy, &base, &negative) || negative) {
    return false;
  }
  return safe_parse_positive_int(text_copy, base, value_p);
}

// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
// range 0 <= i < 100, and buf must have space for two characters. Example:
//   char buf[2];
//   PutTwoDigits(42, buf);
//   // buf[0] == '4'
//   // buf[1] == '2'
inline void PutTwoDigits(size_t i, char* buf) {
  static const char two_ASCII_digits[100][2] = {
      {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
      {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
      {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
      {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
      {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
      {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
      {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
      {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
      {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
      {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
      {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
      {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
      {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
      {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
      {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
      {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
      {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
  assert(i < 100);
  memcpy(buf, two_ASCII_digits[i], 2);
}

}  // anonymous namespace

// ----------------------------------------------------------------------
// FastInt32ToBufferLeft()
// FastUInt32ToBufferLeft()
// FastInt64ToBufferLeft()
// FastUInt64ToBufferLeft()
//
// Like the Fast*ToBuffer() functions above, these are intended for speed.
// Unlike the Fast*ToBuffer() functions, however, these functions write
// their output to the beginning of the buffer (hence the name, as the
// output is left-aligned).  The caller is responsible for ensuring that
// the buffer has enough space to hold the output.
//
// Returns a pointer to the end of the string (i.e. the null character
// terminating the string).
// ----------------------------------------------------------------------

// Used to optimize printing a decimal number's final digit.
const char one_ASCII_final_digits[10][2]{
    {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
    {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
};

char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
  uint32 digits;
  // The idea of this implementation is to trim the number of divides to as few
  // as possible, and also reducing memory stores and branches, by going in
  // steps of two digits at a time rather than one whenever possible.
  // The huge-number case is first, in the hopes that the compiler will output
  // that case in one branch-free block of code, and only output conditional
  // branches into it from below.
  if (u >= 1000000000) {     // >= 1,000,000,000
    digits = u / 100000000;  // 100,000,000
    u -= digits * 100000000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt100_000_000:
    digits = u / 1000000;  // 1,000,000
    u -= digits * 1000000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt1_000_000:
    digits = u / 10000;  // 10,000
    u -= digits * 10000;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt10_000:
    digits = u / 100;
    u -= digits * 100;
    PutTwoDigits(digits, buffer);
    buffer += 2;
  lt100:
    digits = u;
    PutTwoDigits(digits, buffer);
    buffer += 2;
    *buffer = 0;
    return buffer;
  }

  if (u < 100) {
    digits = u;
    if (u >= 10) goto lt100;
    memcpy(buffer, one_ASCII_final_digits[u], 2);
    return buffer + 1;
  }
  if (u < 10000) {  // 10,000
    if (u >= 1000) goto lt10_000;
    digits = u / 100;
    u -= digits * 100;
    *buffer++ = '0' + digits;
    goto lt100;
  }
  if (u < 1000000) {  // 1,000,000
    if (u >= 100000) goto lt1_000_000;
    digits = u / 10000;  //    10,000
    u -= digits * 10000;
    *buffer++ = '0' + digits;
    goto lt10_000;
  }
  if (u < 100000000) {  // 100,000,000
    if (u >= 10000000) goto lt100_000_000;
    digits = u / 1000000;  //   1,000,000
    u -= digits * 1000000;
    *buffer++ = '0' + digits;
    goto lt1_000_000;
  }
  // we already know that u < 1,000,000,000
  digits = u / 100000000;  // 100,000,000
  u -= digits * 100000000;
  *buffer++ = '0' + digits;
  goto lt100_000_000;
}

char* FastInt32ToBufferLeft(int32 i, char* buffer) {
  uint32 u = i;
  if (i < 0) {
    *buffer++ = '-';
    // We need to do the negation in modular (i.e., "unsigned")
    // arithmetic; MSVC++ apprently warns for plain "-u", so
    // we write the equivalent expression "0 - u" instead.
    u = 0 - u;
  }
  return FastUInt32ToBufferLeft(u, buffer);
}

char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
  uint32 u32 = static_cast<uint32>(u64);
  if (u32 == u64) return FastUInt32ToBufferLeft(u32, buffer);

  // Here we know u64 has at least 10 decimal digits.
  uint64 top_1to11 = u64 / 1000000000;
  u32 = static_cast<uint32>(u64 - top_1to11 * 1000000000);
  uint32 top_1to11_32 = static_cast<uint32>(top_1to11);

  if (top_1to11_32 == top_1to11) {
    buffer = FastUInt32ToBufferLeft(top_1to11_32, buffer);
  } else {
    // top_1to11 has more than 32 bits too; print it in two steps.
    uint32 top_8to9 = static_cast<uint32>(top_1to11 / 100);
    uint32 mid_2 = static_cast<uint32>(top_1to11 - top_8to9 * 100);
    buffer = FastUInt32ToBufferLeft(top_8to9, buffer);
    PutTwoDigits(mid_2, buffer);
    buffer += 2;
  }

  // We have only 9 digits now, again the maximum uint32 can handle fully.
  uint32 digits = u32 / 10000000;  // 10,000,000
  u32 -= digits * 10000000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 100000;  // 100,000
  u32 -= digits * 100000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 1000;  // 1,000
  u32 -= digits * 1000;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  digits = u32 / 10;
  u32 -= digits * 10;
  PutTwoDigits(digits, buffer);
  buffer += 2;
  memcpy(buffer, one_ASCII_final_digits[u32], 2);
  return buffer + 1;
}

char* FastInt64ToBufferLeft(int64 i, char* buffer) {
  uint64 u = i;
  if (i < 0) {
    *buffer++ = '-';
    u = 0 - u;
  }
  return FastUInt64ToBufferLeft(u, buffer);
}

bool safe_strto32_base(const string& text, int32* value, int base) {
  return safe_int_internal<int32>(text, value, base);
}

bool safe_strto64_base(const string& text, int64* value, int base) {
  return safe_int_internal<int64>(text, value, base);
}

bool safe_strtou32_base(const string& text, uint32* value, int base) {
  return safe_uint_internal<uint32>(text, value, base);
}

bool safe_strtou64_base(const string& text, uint64* value, int base) {
  return safe_uint_internal<uint64>(text, value, base);
}

bool safe_strtof(const string& piece, float* value) {
  *value = 0.0;
  if (piece.empty()) return false;
  char buf[32];
  std::unique_ptr<char[]> bigbuf;
  char* str = buf;
  if (piece.size() > sizeof(buf) - 1) {
    bigbuf.reset(new char[piece.size() + 1]);
    str = bigbuf.get();
  }
  memcpy(str, piece.data(), piece.size());
  str[piece.size()] = '\0';

  char* endptr;
#ifdef COMPILER_MSVC  // has no strtof()
  *value = strtod(str, &endptr);
#else
  *value = strtof(str, &endptr);
#endif
  if (endptr != str) {
    while (ascii_isspace(*endptr)) ++endptr;
  }
  // Ignore range errors from strtod/strtof.
  // The values it returns on underflow and
  // overflow are the right fallback in a
  // robust setting.
  return *str != '\0' && *endptr == '\0';
}

bool safe_strtod(const string& piece, double* value) {
  *value = 0.0;
  if (piece.empty()) return false;
  char buf[32];
  std::unique_ptr<char[]> bigbuf;
  char* str = buf;
  if (piece.size() > sizeof(buf) - 1) {
    bigbuf.reset(new char[piece.size() + 1]);
    str = bigbuf.get();
  }
  memcpy(str, piece.data(), piece.size());
  str[piece.size()] = '\0';

  char* endptr;
  *value = strtod(str, &endptr);
  if (endptr != str) {
    while (ascii_isspace(*endptr)) ++endptr;
  }
  // Ignore range errors from strtod.  The values it
  // returns on underflow and overflow are the right
  // fallback in a robust setting.
  return *str != '\0' && *endptr == '\0';
}

string SimpleFtoa(float value) {
  char buffer[kFastToBufferSize];
  return FloatToBuffer(value, buffer);
}

char* FloatToBuffer(float value, char* buffer) {
  // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
  // platforms these days.  Just in case some system exists where FLT_DIG
  // is significantly larger -- and risks overflowing our buffer -- we have
  // this assert.
  assert(FLT_DIG < 10);

  int snprintf_result =
      snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG, value);

  // The snprintf should never overflow because the buffer is significantly
  // larger than the precision we asked for.
  assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);

  float parsed_value;
  if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
    snprintf_result =
        snprintf(buffer, kFastToBufferSize, "%.*g", FLT_DIG + 2, value);

    // Should never overflow; see above.
    assert(snprintf_result > 0 && snprintf_result < kFastToBufferSize);
  }
  return buffer;
}

}  // namespace strings
}  // namespace dynamic_depth