aboutsummaryrefslogtreecommitdiff
path: root/bench/benchmark-blocking-sizes.cpp
diff options
context:
space:
mode:
authorMiao Wang <miaowang@google.com>2017-03-08 17:13:58 +0000
committerGerrit Code Review <noreply-gerritcodereview@google.com>2017-03-08 17:13:58 +0000
commit7de1f32623fe9b8d80455905f4f23b944bcb5e48 (patch)
tree0488797fc544fe977bec6418c73445759f052482 /bench/benchmark-blocking-sizes.cpp
parent2121131a9d270120c1712ffcb9cdb7aeaeb33e3f (diff)
parent2b8756b6f1de65d3f8bffab45be6c44ceb7411fc (diff)
downloadeigen-7de1f32623fe9b8d80455905f4f23b944bcb5e48.tar.gz
Merge "Rebase Eigen to 3.3.3."
Diffstat (limited to 'bench/benchmark-blocking-sizes.cpp')
-rw-r--r--bench/benchmark-blocking-sizes.cpp677
1 files changed, 677 insertions, 0 deletions
diff --git a/bench/benchmark-blocking-sizes.cpp b/bench/benchmark-blocking-sizes.cpp
new file mode 100644
index 000000000..827be2880
--- /dev/null
+++ b/bench/benchmark-blocking-sizes.cpp
@@ -0,0 +1,677 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include <iostream>
+#include <cstdint>
+#include <cstdlib>
+#include <vector>
+#include <fstream>
+#include <memory>
+#include <cstdio>
+
+bool eigen_use_specific_block_size;
+int eigen_block_size_k, eigen_block_size_m, eigen_block_size_n;
+#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZES eigen_use_specific_block_size
+#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K eigen_block_size_k
+#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M eigen_block_size_m
+#define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N eigen_block_size_n
+#include <Eigen/Core>
+
+#include <bench/BenchTimer.h>
+
+using namespace Eigen;
+using namespace std;
+
+static BenchTimer timer;
+
+// how many times we repeat each measurement.
+// measurements are randomly shuffled - we're not doing
+// all N identical measurements in a row.
+const int measurement_repetitions = 3;
+
+// Timings below this value are too short to be accurate,
+// we'll repeat measurements with more iterations until
+// we get a timing above that threshold.
+const float min_accurate_time = 1e-2f;
+
+// See --min-working-set-size command line parameter.
+size_t min_working_set_size = 0;
+
+float max_clock_speed = 0.0f;
+
+// range of sizes that we will benchmark (in all 3 K,M,N dimensions)
+const size_t maxsize = 2048;
+const size_t minsize = 16;
+
+typedef MatrixXf MatrixType;
+typedef MatrixType::Scalar Scalar;
+typedef internal::packet_traits<Scalar>::type Packet;
+
+static_assert((maxsize & (maxsize - 1)) == 0, "maxsize must be a power of two");
+static_assert((minsize & (minsize - 1)) == 0, "minsize must be a power of two");
+static_assert(maxsize > minsize, "maxsize must be larger than minsize");
+static_assert(maxsize < (minsize << 16), "maxsize must be less than (minsize<<16)");
+
+// just a helper to store a triple of K,M,N sizes for matrix product
+struct size_triple_t
+{
+ size_t k, m, n;
+ size_triple_t() : k(0), m(0), n(0) {}
+ size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
+ size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
+ size_triple_t(uint16_t compact)
+ {
+ k = 1 << ((compact & 0xf00) >> 8);
+ m = 1 << ((compact & 0x0f0) >> 4);
+ n = 1 << ((compact & 0x00f) >> 0);
+ }
+};
+
+uint8_t log2_pot(size_t x) {
+ size_t l = 0;
+ while (x >>= 1) l++;
+ return l;
+}
+
+// Convert between size tripes and a compact form fitting in 12 bits
+// where each size, which must be a POT, is encoded as its log2, on 4 bits
+// so the largest representable size is 2^15 == 32k ... big enough.
+uint16_t compact_size_triple(size_t k, size_t m, size_t n)
+{
+ return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
+}
+
+uint16_t compact_size_triple(const size_triple_t& t)
+{
+ return compact_size_triple(t.k, t.m, t.n);
+}
+
+// A single benchmark. Initially only contains benchmark params.
+// Then call run(), which stores the result in the gflops field.
+struct benchmark_t
+{
+ uint16_t compact_product_size;
+ uint16_t compact_block_size;
+ bool use_default_block_size;
+ float gflops;
+ benchmark_t()
+ : compact_product_size(0)
+ , compact_block_size(0)
+ , use_default_block_size(false)
+ , gflops(0)
+ {
+ }
+ benchmark_t(size_t pk, size_t pm, size_t pn,
+ size_t bk, size_t bm, size_t bn)
+ : compact_product_size(compact_size_triple(pk, pm, pn))
+ , compact_block_size(compact_size_triple(bk, bm, bn))
+ , use_default_block_size(false)
+ , gflops(0)
+ {}
+ benchmark_t(size_t pk, size_t pm, size_t pn)
+ : compact_product_size(compact_size_triple(pk, pm, pn))
+ , compact_block_size(0)
+ , use_default_block_size(true)
+ , gflops(0)
+ {}
+
+ void run();
+};
+
+ostream& operator<<(ostream& s, const benchmark_t& b)
+{
+ s << hex << b.compact_product_size << dec;
+ if (b.use_default_block_size) {
+ size_triple_t t(b.compact_product_size);
+ Index k = t.k, m = t.m, n = t.n;
+ internal::computeProductBlockingSizes<Scalar, Scalar>(k, m, n);
+ s << " default(" << k << ", " << m << ", " << n << ")";
+ } else {
+ s << " " << hex << b.compact_block_size << dec;
+ }
+ s << " " << b.gflops;
+ return s;
+}
+
+// We sort first by increasing benchmark parameters,
+// then by decreasing performance.
+bool operator<(const benchmark_t& b1, const benchmark_t& b2)
+{
+ return b1.compact_product_size < b2.compact_product_size ||
+ (b1.compact_product_size == b2.compact_product_size && (
+ (b1.compact_block_size < b2.compact_block_size || (
+ b1.compact_block_size == b2.compact_block_size &&
+ b1.gflops > b2.gflops))));
+}
+
+void benchmark_t::run()
+{
+ size_triple_t productsizes(compact_product_size);
+
+ if (use_default_block_size) {
+ eigen_use_specific_block_size = false;
+ } else {
+ // feed eigen with our custom blocking params
+ eigen_use_specific_block_size = true;
+ size_triple_t blocksizes(compact_block_size);
+ eigen_block_size_k = blocksizes.k;
+ eigen_block_size_m = blocksizes.m;
+ eigen_block_size_n = blocksizes.n;
+ }
+
+ // set up the matrix pool
+
+ const size_t combined_three_matrices_sizes =
+ sizeof(Scalar) *
+ (productsizes.k * productsizes.m +
+ productsizes.k * productsizes.n +
+ productsizes.m * productsizes.n);
+
+ // 64 M is large enough that nobody has a cache bigger than that,
+ // while still being small enough that everybody has this much RAM,
+ // so conveniently we don't need to special-case platforms here.
+ const size_t unlikely_large_cache_size = 64 << 20;
+
+ const size_t working_set_size =
+ min_working_set_size ? min_working_set_size : unlikely_large_cache_size;
+
+ const size_t matrix_pool_size =
+ 1 + working_set_size / combined_three_matrices_sizes;
+
+ MatrixType *lhs = new MatrixType[matrix_pool_size];
+ MatrixType *rhs = new MatrixType[matrix_pool_size];
+ MatrixType *dst = new MatrixType[matrix_pool_size];
+
+ for (size_t i = 0; i < matrix_pool_size; i++) {
+ lhs[i] = MatrixType::Zero(productsizes.m, productsizes.k);
+ rhs[i] = MatrixType::Zero(productsizes.k, productsizes.n);
+ dst[i] = MatrixType::Zero(productsizes.m, productsizes.n);
+ }
+
+ // main benchmark loop
+
+ int iters_at_a_time = 1;
+ float time_per_iter = 0.0f;
+ size_t matrix_index = 0;
+ while (true) {
+
+ double starttime = timer.getCpuTime();
+ for (int i = 0; i < iters_at_a_time; i++) {
+ dst[matrix_index].noalias() = lhs[matrix_index] * rhs[matrix_index];
+ matrix_index++;
+ if (matrix_index == matrix_pool_size) {
+ matrix_index = 0;
+ }
+ }
+ double endtime = timer.getCpuTime();
+
+ const float timing = float(endtime - starttime);
+
+ if (timing >= min_accurate_time) {
+ time_per_iter = timing / iters_at_a_time;
+ break;
+ }
+
+ iters_at_a_time *= 2;
+ }
+
+ delete[] lhs;
+ delete[] rhs;
+ delete[] dst;
+
+ gflops = 2e-9 * productsizes.k * productsizes.m * productsizes.n / time_per_iter;
+}
+
+void print_cpuinfo()
+{
+#ifdef __linux__
+ cout << "contents of /proc/cpuinfo:" << endl;
+ string line;
+ ifstream cpuinfo("/proc/cpuinfo");
+ if (cpuinfo.is_open()) {
+ while (getline(cpuinfo, line)) {
+ cout << line << endl;
+ }
+ cpuinfo.close();
+ }
+ cout << endl;
+#elif defined __APPLE__
+ cout << "output of sysctl hw:" << endl;
+ system("sysctl hw");
+ cout << endl;
+#endif
+}
+
+template <typename T>
+string type_name()
+{
+ return "unknown";
+}
+
+template<>
+string type_name<float>()
+{
+ return "float";
+}
+
+template<>
+string type_name<double>()
+{
+ return "double";
+}
+
+struct action_t
+{
+ virtual const char* invokation_name() const { abort(); return nullptr; }
+ virtual void run() const { abort(); }
+ virtual ~action_t() {}
+};
+
+void show_usage_and_exit(int /*argc*/, char* argv[],
+ const vector<unique_ptr<action_t>>& available_actions)
+{
+ cerr << "usage: " << argv[0] << " <action> [options...]" << endl << endl;
+ cerr << "available actions:" << endl << endl;
+ for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
+ cerr << " " << (*it)->invokation_name() << endl;
+ }
+ cerr << endl;
+ cerr << "options:" << endl << endl;
+ cerr << " --min-working-set-size=N:" << endl;
+ cerr << " Set the minimum working set size to N bytes." << endl;
+ cerr << " This is rounded up as needed to a multiple of matrix size." << endl;
+ cerr << " A larger working set lowers the chance of a warm cache." << endl;
+ cerr << " The default value 0 means use a large enough working" << endl;
+ cerr << " set to likely outsize caches." << endl;
+ cerr << " A value of 1 (that is, 1 byte) would mean don't do anything to" << endl;
+ cerr << " avoid warm caches." << endl;
+ exit(1);
+}
+
+float measure_clock_speed()
+{
+ cerr << "Measuring clock speed... \r" << flush;
+
+ vector<float> all_gflops;
+ for (int i = 0; i < 8; i++) {
+ benchmark_t b(1024, 1024, 1024);
+ b.run();
+ all_gflops.push_back(b.gflops);
+ }
+
+ sort(all_gflops.begin(), all_gflops.end());
+ float stable_estimate = all_gflops[2] + all_gflops[3] + all_gflops[4] + all_gflops[5];
+
+ // multiply by an arbitrary constant to discourage trying doing anything with the
+ // returned values besides just comparing them with each other.
+ float result = stable_estimate * 123.456f;
+
+ return result;
+}
+
+struct human_duration_t
+{
+ int seconds;
+ human_duration_t(int s) : seconds(s) {}
+};
+
+ostream& operator<<(ostream& s, const human_duration_t& d)
+{
+ int remainder = d.seconds;
+ if (remainder > 3600) {
+ int hours = remainder / 3600;
+ s << hours << " h ";
+ remainder -= hours * 3600;
+ }
+ if (remainder > 60) {
+ int minutes = remainder / 60;
+ s << minutes << " min ";
+ remainder -= minutes * 60;
+ }
+ if (d.seconds < 600) {
+ s << remainder << " s";
+ }
+ return s;
+}
+
+const char session_filename[] = "/data/local/tmp/benchmark-blocking-sizes-session.data";
+
+void serialize_benchmarks(const char* filename, const vector<benchmark_t>& benchmarks, size_t first_benchmark_to_run)
+{
+ FILE* file = fopen(filename, "w");
+ if (!file) {
+ cerr << "Could not open file " << filename << " for writing." << endl;
+ cerr << "Do you have write permissions on the current working directory?" << endl;
+ exit(1);
+ }
+ size_t benchmarks_vector_size = benchmarks.size();
+ fwrite(&max_clock_speed, sizeof(max_clock_speed), 1, file);
+ fwrite(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file);
+ fwrite(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file);
+ fwrite(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file);
+ fclose(file);
+}
+
+bool deserialize_benchmarks(const char* filename, vector<benchmark_t>& benchmarks, size_t& first_benchmark_to_run)
+{
+ FILE* file = fopen(filename, "r");
+ if (!file) {
+ return false;
+ }
+ if (1 != fread(&max_clock_speed, sizeof(max_clock_speed), 1, file)) {
+ return false;
+ }
+ size_t benchmarks_vector_size = 0;
+ if (1 != fread(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file)) {
+ return false;
+ }
+ if (1 != fread(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file)) {
+ return false;
+ }
+ benchmarks.resize(benchmarks_vector_size);
+ if (benchmarks.size() != fread(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file)) {
+ return false;
+ }
+ unlink(filename);
+ return true;
+}
+
+void try_run_some_benchmarks(
+ vector<benchmark_t>& benchmarks,
+ double time_start,
+ size_t& first_benchmark_to_run)
+{
+ if (first_benchmark_to_run == benchmarks.size()) {
+ return;
+ }
+
+ double time_last_progress_update = 0;
+ double time_last_clock_speed_measurement = 0;
+ double time_now = 0;
+
+ size_t benchmark_index = first_benchmark_to_run;
+
+ while (true) {
+ float ratio_done = float(benchmark_index) / benchmarks.size();
+ time_now = timer.getRealTime();
+
+ // We check clock speed every minute and at the end.
+ if (benchmark_index == benchmarks.size() ||
+ time_now > time_last_clock_speed_measurement + 60.0f)
+ {
+ time_last_clock_speed_measurement = time_now;
+
+ // Ensure that clock speed is as expected
+ float current_clock_speed = measure_clock_speed();
+
+ // The tolerance needs to be smaller than the relative difference between
+ // clock speeds that a device could operate under.
+ // It seems unlikely that a device would be throttling clock speeds by
+ // amounts smaller than 2%.
+ // With a value of 1%, I was getting within noise on a Sandy Bridge.
+ const float clock_speed_tolerance = 0.02f;
+
+ if (current_clock_speed > (1 + clock_speed_tolerance) * max_clock_speed) {
+ // Clock speed is now higher than we previously measured.
+ // Either our initial measurement was inaccurate, which won't happen
+ // too many times as we are keeping the best clock speed value and
+ // and allowing some tolerance; or something really weird happened,
+ // which invalidates all benchmark results collected so far.
+ // Either way, we better restart all over again now.
+ if (benchmark_index) {
+ cerr << "Restarting at " << 100.0f * ratio_done
+ << " % because clock speed increased. " << endl;
+ }
+ max_clock_speed = current_clock_speed;
+ first_benchmark_to_run = 0;
+ return;
+ }
+
+ bool rerun_last_tests = false;
+
+ if (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
+ cerr << "Measurements completed so far: "
+ << 100.0f * ratio_done
+ << " % " << endl;
+ cerr << "Clock speed seems to be only "
+ << current_clock_speed/max_clock_speed
+ << " times what it used to be." << endl;
+
+ unsigned int seconds_to_sleep_if_lower_clock_speed = 1;
+
+ while (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
+ if (seconds_to_sleep_if_lower_clock_speed > 32) {
+ cerr << "Sleeping longer probably won't make a difference." << endl;
+ cerr << "Serializing benchmarks to " << session_filename << endl;
+ serialize_benchmarks(session_filename, benchmarks, first_benchmark_to_run);
+ cerr << "Now restart this benchmark, and it should pick up where we left." << endl;
+ exit(2);
+ }
+ rerun_last_tests = true;
+ cerr << "Sleeping "
+ << seconds_to_sleep_if_lower_clock_speed
+ << " s... \r" << endl;
+ sleep(seconds_to_sleep_if_lower_clock_speed);
+ current_clock_speed = measure_clock_speed();
+ seconds_to_sleep_if_lower_clock_speed *= 2;
+ }
+ }
+
+ if (rerun_last_tests) {
+ cerr << "Redoing the last "
+ << 100.0f * float(benchmark_index - first_benchmark_to_run) / benchmarks.size()
+ << " % because clock speed had been low. " << endl;
+ return;
+ }
+
+ // nothing wrong with the clock speed so far, so there won't be a need to rerun
+ // benchmarks run so far in case we later encounter a lower clock speed.
+ first_benchmark_to_run = benchmark_index;
+ }
+
+ if (benchmark_index == benchmarks.size()) {
+ // We're done!
+ first_benchmark_to_run = benchmarks.size();
+ // Erase progress info
+ cerr << " " << endl;
+ return;
+ }
+
+ // Display progress info on stderr
+ if (time_now > time_last_progress_update + 1.0f) {
+ time_last_progress_update = time_now;
+ cerr << "Measurements... " << 100.0f * ratio_done
+ << " %, ETA "
+ << human_duration_t(float(time_now - time_start) * (1.0f - ratio_done) / ratio_done)
+ << " \r" << flush;
+ }
+
+ // This is where we actually run a benchmark!
+ benchmarks[benchmark_index].run();
+ benchmark_index++;
+ }
+}
+
+void run_benchmarks(vector<benchmark_t>& benchmarks)
+{
+ size_t first_benchmark_to_run;
+ vector<benchmark_t> deserialized_benchmarks;
+ bool use_deserialized_benchmarks = false;
+ if (deserialize_benchmarks(session_filename, deserialized_benchmarks, first_benchmark_to_run)) {
+ cerr << "Found serialized session with "
+ << 100.0f * first_benchmark_to_run / deserialized_benchmarks.size()
+ << " % already done" << endl;
+ if (deserialized_benchmarks.size() == benchmarks.size() &&
+ first_benchmark_to_run > 0 &&
+ first_benchmark_to_run < benchmarks.size())
+ {
+ use_deserialized_benchmarks = true;
+ }
+ }
+
+ if (use_deserialized_benchmarks) {
+ benchmarks = deserialized_benchmarks;
+ } else {
+ // not using deserialized benchmarks, starting from scratch
+ first_benchmark_to_run = 0;
+
+ // Randomly shuffling benchmarks allows us to get accurate enough progress info,
+ // as now the cheap/expensive benchmarks are randomly mixed so they average out.
+ // It also means that if data is corrupted for some time span, the odds are that
+ // not all repetitions of a given benchmark will be corrupted.
+ random_shuffle(benchmarks.begin(), benchmarks.end());
+ }
+
+ for (int i = 0; i < 4; i++) {
+ max_clock_speed = max(max_clock_speed, measure_clock_speed());
+ }
+
+ double time_start = 0.0;
+ while (first_benchmark_to_run < benchmarks.size()) {
+ if (first_benchmark_to_run == 0) {
+ time_start = timer.getRealTime();
+ }
+ try_run_some_benchmarks(benchmarks,
+ time_start,
+ first_benchmark_to_run);
+ }
+
+ // Sort timings by increasing benchmark parameters, and decreasing gflops.
+ // The latter is very important. It means that we can ignore all but the first
+ // benchmark with given parameters.
+ sort(benchmarks.begin(), benchmarks.end());
+
+ // Collect best (i.e. now first) results for each parameter values.
+ vector<benchmark_t> best_benchmarks;
+ for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
+ if (best_benchmarks.empty() ||
+ best_benchmarks.back().compact_product_size != it->compact_product_size ||
+ best_benchmarks.back().compact_block_size != it->compact_block_size)
+ {
+ best_benchmarks.push_back(*it);
+ }
+ }
+
+ // keep and return only the best benchmarks
+ benchmarks = best_benchmarks;
+}
+
+struct measure_all_pot_sizes_action_t : action_t
+{
+ virtual const char* invokation_name() const { return "all-pot-sizes"; }
+ virtual void run() const
+ {
+ vector<benchmark_t> benchmarks;
+ for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
+ for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
+ for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
+ for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
+ for (size_t kblock = minsize; kblock <= ksize; kblock *= 2) {
+ for (size_t mblock = minsize; mblock <= msize; mblock *= 2) {
+ for (size_t nblock = minsize; nblock <= nsize; nblock *= 2) {
+ benchmarks.emplace_back(ksize, msize, nsize, kblock, mblock, nblock);
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+
+ run_benchmarks(benchmarks);
+
+ cout << "BEGIN MEASUREMENTS ALL POT SIZES" << endl;
+ for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
+ cout << *it << endl;
+ }
+ }
+};
+
+struct measure_default_sizes_action_t : action_t
+{
+ virtual const char* invokation_name() const { return "default-sizes"; }
+ virtual void run() const
+ {
+ vector<benchmark_t> benchmarks;
+ for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
+ for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
+ for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
+ for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
+ benchmarks.emplace_back(ksize, msize, nsize);
+ }
+ }
+ }
+ }
+
+ run_benchmarks(benchmarks);
+
+ cout << "BEGIN MEASUREMENTS DEFAULT SIZES" << endl;
+ for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
+ cout << *it << endl;
+ }
+ }
+};
+
+int main(int argc, char* argv[])
+{
+ double time_start = timer.getRealTime();
+ cout.precision(4);
+ cerr.precision(4);
+
+ vector<unique_ptr<action_t>> available_actions;
+ available_actions.emplace_back(new measure_all_pot_sizes_action_t);
+ available_actions.emplace_back(new measure_default_sizes_action_t);
+
+ auto action = available_actions.end();
+
+ if (argc <= 1) {
+ show_usage_and_exit(argc, argv, available_actions);
+ }
+ for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
+ if (!strcmp(argv[1], (*it)->invokation_name())) {
+ action = it;
+ break;
+ }
+ }
+
+ if (action == available_actions.end()) {
+ show_usage_and_exit(argc, argv, available_actions);
+ }
+
+ for (int i = 2; i < argc; i++) {
+ if (argv[i] == strstr(argv[i], "--min-working-set-size=")) {
+ const char* equals_sign = strchr(argv[i], '=');
+ min_working_set_size = strtoul(equals_sign+1, nullptr, 10);
+ } else {
+ cerr << "unrecognized option: " << argv[i] << endl << endl;
+ show_usage_and_exit(argc, argv, available_actions);
+ }
+ }
+
+ print_cpuinfo();
+
+ cout << "benchmark parameters:" << endl;
+ cout << "pointer size: " << 8*sizeof(void*) << " bits" << endl;
+ cout << "scalar type: " << type_name<Scalar>() << endl;
+ cout << "packet size: " << internal::packet_traits<MatrixType::Scalar>::size << endl;
+ cout << "minsize = " << minsize << endl;
+ cout << "maxsize = " << maxsize << endl;
+ cout << "measurement_repetitions = " << measurement_repetitions << endl;
+ cout << "min_accurate_time = " << min_accurate_time << endl;
+ cout << "min_working_set_size = " << min_working_set_size;
+ if (min_working_set_size == 0) {
+ cout << " (try to outsize caches)";
+ }
+ cout << endl << endl;
+
+ (*action)->run();
+
+ double time_end = timer.getRealTime();
+ cerr << "Finished in " << human_duration_t(time_end - time_start) << endl;
+}