aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/GeneralProduct.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/GeneralProduct.h')
-rw-r--r--Eigen/src/Core/GeneralProduct.h513
1 files changed, 166 insertions, 347 deletions
diff --git a/Eigen/src/Core/GeneralProduct.h b/Eigen/src/Core/GeneralProduct.h
index 9e805a80f..0f16cd8e3 100644
--- a/Eigen/src/Core/GeneralProduct.h
+++ b/Eigen/src/Core/GeneralProduct.h
@@ -11,29 +11,7 @@
#ifndef EIGEN_GENERAL_PRODUCT_H
#define EIGEN_GENERAL_PRODUCT_H
-namespace Eigen {
-
-/** \class GeneralProduct
- * \ingroup Core_Module
- *
- * \brief Expression of the product of two general matrices or vectors
- *
- * \param LhsNested the type used to store the left-hand side
- * \param RhsNested the type used to store the right-hand side
- * \param ProductMode the type of the product
- *
- * This class represents an expression of the product of two general matrices.
- * We call a general matrix, a dense matrix with full storage. For instance,
- * This excludes triangular, selfadjoint, and sparse matrices.
- * It is the return type of the operator* between general matrices. Its template
- * arguments are determined automatically by ProductReturnType. Therefore,
- * GeneralProduct should never be used direclty. To determine the result type of a
- * function which involves a matrix product, use ProductReturnType::Type.
- *
- * \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
-class GeneralProduct;
+namespace Eigen {
enum {
Large = 2,
@@ -47,7 +25,8 @@ template<int Rows, int Cols, int Depth> struct product_type_selector;
template<int Size, int MaxSize> struct product_size_category
{
enum { is_large = MaxSize == Dynamic ||
- Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
+ Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
+ (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
value = is_large ? Large
: Size == 1 ? 1
: Small
@@ -59,15 +38,14 @@ template<typename Lhs, typename Rhs> struct product_type
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
- MaxRows = _Lhs::MaxRowsAtCompileTime,
- Rows = _Lhs::RowsAtCompileTime,
- MaxCols = _Rhs::MaxColsAtCompileTime,
- Cols = _Rhs::ColsAtCompileTime,
- MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
- _Rhs::MaxRowsAtCompileTime),
- Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
- _Rhs::RowsAtCompileTime),
- LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
+ MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
+ Rows = traits<_Lhs>::RowsAtCompileTime,
+ MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
+ Cols = traits<_Rhs>::ColsAtCompileTime,
+ MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
+ traits<_Rhs>::MaxRowsAtCompileTime),
+ Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
+ traits<_Rhs>::RowsAtCompileTime)
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
@@ -82,7 +60,8 @@ private:
public:
enum {
- value = selector::ret
+ value = selector::ret,
+ ret = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
@@ -98,12 +77,13 @@ public:
#endif
};
-
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
+template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; };
+template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
@@ -122,60 +102,12 @@ template<> struct product_type_selector<Small,Small,Large> { enum
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
-template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
+template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; };
+template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
} // end namespace internal
-/** \class ProductReturnType
- * \ingroup Core_Module
- *
- * \brief Helper class to get the correct and optimized returned type of operator*
- *
- * \param Lhs the type of the left-hand side
- * \param Rhs the type of the right-hand side
- * \param ProductMode the type of the product (determined automatically by internal::product_mode)
- *
- * This class defines the typename Type representing the optimized product expression
- * between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
- * is the recommended way to define the result type of a function returning an expression
- * which involve a matrix product. The class Product should never be
- * used directly.
- *
- * \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
- */
-template<typename Lhs, typename Rhs, int ProductType>
-struct ProductReturnType
-{
- // TODO use the nested type to reduce instanciations ????
-// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
-// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
-
- typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
-};
-
-template<typename Lhs, typename Rhs>
-struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{
- typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
- typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
- typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
-};
-
-// this is a workaround for sun CC
-template<typename Lhs, typename Rhs>
-struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
-{};
-
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
@@ -187,119 +119,10 @@ struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedPr
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
-namespace internal {
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
- : traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, InnerProduct>
- : internal::no_assignment_operator,
- public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
-{
- typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
- public:
- GeneralProduct(const Lhs& lhs, const Rhs& rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
-
- Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
- }
-
- /** Convertion to scalar */
- operator const typename Base::Scalar() const {
- return Base::coeff(0,0);
- }
-};
-
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
-namespace internal {
-
-// Column major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const false_type&)
-{
- typedef typename Dest::Index Index;
- // FIXME make sure lhs is sequentially stored
- // FIXME not very good if rhs is real and lhs complex while alpha is real too
- const Index cols = dest.cols();
- for (Index j=0; j<cols; ++j)
- func(dest.col(j), prod.rhs().coeff(0,j) * prod.lhs());
-}
-
-// Row major
-template<typename ProductType, typename Dest, typename Func>
-EIGEN_DONT_INLINE void outer_product_selector_run(const ProductType& prod, Dest& dest, const Func& func, const true_type&) {
- typedef typename Dest::Index Index;
- // FIXME make sure rhs is sequentially stored
- // FIXME not very good if lhs is real and rhs complex while alpha is real too
- const Index rows = dest.rows();
- for (Index i=0; i<rows; ++i)
- func(dest.row(i), prod.lhs().coeff(i,0) * prod.rhs());
-}
-
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
-{};
-
-}
-
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, OuterProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
-{
- template<typename T> struct IsRowMajor : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
-
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
- {
- EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
- struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
- struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
- struct adds {
- Scalar m_scale;
- adds(const Scalar& s) : m_scale(s) {}
- template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
- dst.const_cast_derived() += m_scale * src;
- }
- };
-
- template<typename Dest>
- inline void evalTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, set(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void addTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, add(), IsRowMajor<Dest>());
- }
-
- template<typename Dest>
- inline void subTo(Dest& dest) const {
- internal::outer_product_selector_run(*this, dest, sub(), IsRowMajor<Dest>());
- }
-
- template<typename Dest> void scaleAndAddTo(Dest& dest, const Scalar& alpha) const
- {
- internal::outer_product_selector_run(*this, dest, adds(alpha), IsRowMajor<Dest>());
- }
-};
-
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
@@ -313,60 +136,13 @@ class GeneralProduct<Lhs, Rhs, OuterProduct>
*/
namespace internal {
-template<typename Lhs, typename Rhs>
-struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
- : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
-{};
-
template<int Side, int StorageOrder, bool BlasCompatible>
-struct gemv_selector;
+struct gemv_dense_selector;
} // end namespace internal
-template<typename Lhs, typename Rhs>
-class GeneralProduct<Lhs, Rhs, GemvProduct>
- : public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
-{
- public:
- EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
-
- typedef typename Lhs::Scalar LhsScalar;
- typedef typename Rhs::Scalar RhsScalar;
-
- GeneralProduct(const Lhs& a_lhs, const Rhs& a_rhs) : Base(a_lhs,a_rhs)
- {
-// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
-// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- }
-
- enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
- typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
-
- template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
- {
- eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
- internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
- bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
- }
-};
-
namespace internal {
-// The vector is on the left => transposition
-template<int StorageOrder, bool BlasCompatible>
-struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
-{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
- {
- Transpose<Dest> destT(dest);
- enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
- gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
- ::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
- (prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
- }
-};
-
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
@@ -384,126 +160,161 @@ struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
- #if EIGEN_ALIGN_STATICALLY
- internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
- EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
- #else
- // Some architectures cannot align on the stack,
- // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
enum {
ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
PacketSize = internal::packet_traits<Scalar>::size
};
- internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
+ #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
+ internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data;
+ EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
+ #else
+ // Some architectures cannot align on the stack,
+ // => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
+ internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() {
return ForceAlignment
- ? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
+ ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
: m_data.array;
}
#endif
};
-template<> struct gemv_selector<OnTheRight,ColMajor,true>
+// The vector is on the left => transposition
+template<int StorageOrder, bool BlasCompatible>
+struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
- template<typename ProductType, typename Dest>
- static inline void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename ProductType::Index Index;
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::RealScalar RealScalar;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
- typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
-
- ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
- ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ Transpose<Dest> destT(dest);
+ enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
+ gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
+ ::run(rhs.transpose(), lhs.transpose(), destT, alpha);
+ }
+};
+
+template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
+{
+ template<typename Lhs, typename Rhs, typename Dest>
+ static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
+ {
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+ typedef typename Dest::RealScalar RealScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+
+ typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
+
+ ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
+ ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
+
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
+
+ // make sure Dest is a compile-time vector type (bug 1166)
+ typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
- EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
+ EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
- MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
+ MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal
};
- gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
-
- bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
- bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
-
+ typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
+ typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
- ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
- evalToDest ? dest.data() : static_dest.data());
-
- if(!evalToDest)
+ if(!MightCannotUseDest)
{
- #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = dest.size();
- EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- #endif
- if(!alphaIsCompatible)
+ // shortcut if we are sure to be able to use dest directly,
+ // this ease the compiler to generate cleaner and more optimzized code for most common cases
+ general_matrix_vector_product
+ <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
+ actualLhs.rows(), actualLhs.cols(),
+ LhsMapper(actualLhs.data(), actualLhs.outerStride()),
+ RhsMapper(actualRhs.data(), actualRhs.innerStride()),
+ dest.data(), 1,
+ compatibleAlpha);
+ }
+ else
+ {
+ gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
+
+ const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
+ const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
+
+ ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
+ evalToDest ? dest.data() : static_dest.data());
+
+ if(!evalToDest)
{
- MappedDest(actualDestPtr, dest.size()).setZero();
- compatibleAlpha = RhsScalar(1);
+ #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
+ Index size = dest.size();
+ EIGEN_DENSE_STORAGE_CTOR_PLUGIN
+ #endif
+ if(!alphaIsCompatible)
+ {
+ MappedDest(actualDestPtr, dest.size()).setZero();
+ compatibleAlpha = RhsScalar(1);
+ }
+ else
+ MappedDest(actualDestPtr, dest.size()) = dest;
}
- else
- MappedDest(actualDestPtr, dest.size()) = dest;
- }
- general_matrix_vector_product
- <Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
- actualLhs.rows(), actualLhs.cols(),
- actualLhs.data(), actualLhs.outerStride(),
- actualRhs.data(), actualRhs.innerStride(),
- actualDestPtr, 1,
- compatibleAlpha);
+ general_matrix_vector_product
+ <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
+ actualLhs.rows(), actualLhs.cols(),
+ LhsMapper(actualLhs.data(), actualLhs.outerStride()),
+ RhsMapper(actualRhs.data(), actualRhs.innerStride()),
+ actualDestPtr, 1,
+ compatibleAlpha);
- if (!evalToDest)
- {
- if(!alphaIsCompatible)
- dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
- else
- dest = MappedDest(actualDestPtr, dest.size());
+ if (!evalToDest)
+ {
+ if(!alphaIsCompatible)
+ dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size());
+ else
+ dest = MappedDest(actualDestPtr, dest.size());
+ }
}
}
};
-template<> struct gemv_selector<OnTheRight,RowMajor,true>
+template<> struct gemv_dense_selector<OnTheRight,RowMajor,true>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename ProductType::LhsScalar LhsScalar;
- typedef typename ProductType::RhsScalar RhsScalar;
- typedef typename ProductType::Scalar ResScalar;
- typedef typename ProductType::Index Index;
- typedef typename ProductType::ActualLhsType ActualLhsType;
- typedef typename ProductType::ActualRhsType ActualRhsType;
- typedef typename ProductType::_ActualRhsType _ActualRhsType;
- typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
- typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
-
- typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
- typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
-
- ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
- * RhsBlasTraits::extractScalarFactor(prod.rhs());
+ typedef typename Lhs::Scalar LhsScalar;
+ typedef typename Rhs::Scalar RhsScalar;
+ typedef typename Dest::Scalar ResScalar;
+
+ typedef internal::blas_traits<Lhs> LhsBlasTraits;
+ typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
+ typedef internal::blas_traits<Rhs> RhsBlasTraits;
+ typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
+ typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
+
+ typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
+ typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
+
+ ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
+ * RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
- DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
+ DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
- gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
+ gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
@@ -511,45 +322,48 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
- int size = actualRhs.size();
+ Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
- Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
+ Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
+ typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
+ typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper;
general_matrix_vector_product
- <Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
+ <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
- actualLhs.data(), actualLhs.outerStride(),
- actualRhsPtr, 1,
- dest.data(), dest.innerStride(),
+ LhsMapper(actualLhs.data(), actualLhs.outerStride()),
+ RhsMapper(actualRhsPtr, 1),
+ dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
actualAlpha);
}
};
-template<> struct gemv_selector<OnTheRight,ColMajor,false>
+template<> struct gemv_dense_selector<OnTheRight,ColMajor,false>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename Dest::Index Index;
- // TODO makes sure dest is sequentially stored in memory, otherwise use a temp
- const Index size = prod.rhs().rows();
+ EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
+ // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp
+ typename nested_eval<Rhs,1>::type actual_rhs(rhs);
+ const Index size = rhs.rows();
for(Index k=0; k<size; ++k)
- dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
+ dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k);
}
};
-template<> struct gemv_selector<OnTheRight,RowMajor,false>
+template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
{
- template<typename ProductType, typename Dest>
- static void run(const ProductType& prod, Dest& dest, const typename ProductType::Scalar& alpha)
+ template<typename Lhs, typename Rhs, typename Dest>
+ static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
- typedef typename Dest::Index Index;
- // TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
- const Index rows = prod.rows();
+ EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
+ typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs);
+ const Index rows = dest.rows();
for(Index i=0; i<rows; ++i)
- dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
+ dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum();
}
};
@@ -565,9 +379,11 @@ template<> struct gemv_selector<OnTheRight,RowMajor,false>
*
* \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*()
*/
+#ifndef __CUDACC__
+
template<typename Derived>
template<typename OtherDerived>
-inline const typename ProductReturnType<Derived, OtherDerived>::Type
+inline const Product<Derived, OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
// A note regarding the function declaration: In MSVC, this function will sometimes
@@ -592,9 +408,12 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
#ifdef EIGEN_DEBUG_PRODUCT
internal::product_type<Derived,OtherDerived>::debug();
#endif
- return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
+
+ return Product<Derived, OtherDerived>(derived(), other.derived());
}
+#endif // __CUDACC__
+
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
*
* The returned product will behave like any other expressions: the coefficients of the product will be
@@ -608,7 +427,7 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
*/
template<typename Derived>
template<typename OtherDerived>
-const typename LazyProductReturnType<Derived,OtherDerived>::Type
+const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
@@ -627,7 +446,7 @@ MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
- return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
+ return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}
} // end namespace Eigen