aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Eigen2Support/Geometry/Quaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Eigen2Support/Geometry/Quaternion.h')
-rw-r--r--Eigen/src/Eigen2Support/Geometry/Quaternion.h495
1 files changed, 0 insertions, 495 deletions
diff --git a/Eigen/src/Eigen2Support/Geometry/Quaternion.h b/Eigen/src/Eigen2Support/Geometry/Quaternion.h
deleted file mode 100644
index 4b6390cf1..000000000
--- a/Eigen/src/Eigen2Support/Geometry/Quaternion.h
+++ /dev/null
@@ -1,495 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
-
-namespace Eigen {
-
-template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
-struct ei_quaternion_assign_impl;
-
-/** \geometry_module \ingroup Geometry_Module
- *
- * \class Quaternion
- *
- * \brief The quaternion class used to represent 3D orientations and rotations
- *
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- *
- * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of
- * orientations and rotations of objects in three dimensions. Compared to other representations
- * like Euler angles or 3x3 matrices, quatertions offer the following advantages:
- * \li \b compact storage (4 scalars)
- * \li \b efficient to compose (28 flops),
- * \li \b stable spherical interpolation
- *
- * The following two typedefs are provided for convenience:
- * \li \c Quaternionf for \c float
- * \li \c Quaterniond for \c double
- *
- * \sa class AngleAxis, class Transform
- */
-
-template<typename _Scalar> struct ei_traits<Quaternion<_Scalar> >
-{
- typedef _Scalar Scalar;
-};
-
-template<typename _Scalar>
-class Quaternion : public RotationBase<Quaternion<_Scalar>,3>
-{
- typedef RotationBase<Quaternion<_Scalar>,3> Base;
-
-public:
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4)
-
- using Base::operator*;
-
- /** the scalar type of the coefficients */
- typedef _Scalar Scalar;
-
- /** the type of the Coefficients 4-vector */
- typedef Matrix<Scalar, 4, 1> Coefficients;
- /** the type of a 3D vector */
- typedef Matrix<Scalar,3,1> Vector3;
- /** the equivalent rotation matrix type */
- typedef Matrix<Scalar,3,3> Matrix3;
- /** the equivalent angle-axis type */
- typedef AngleAxis<Scalar> AngleAxisType;
-
- /** \returns the \c x coefficient */
- inline Scalar x() const { return m_coeffs.coeff(0); }
- /** \returns the \c y coefficient */
- inline Scalar y() const { return m_coeffs.coeff(1); }
- /** \returns the \c z coefficient */
- inline Scalar z() const { return m_coeffs.coeff(2); }
- /** \returns the \c w coefficient */
- inline Scalar w() const { return m_coeffs.coeff(3); }
-
- /** \returns a reference to the \c x coefficient */
- inline Scalar& x() { return m_coeffs.coeffRef(0); }
- /** \returns a reference to the \c y coefficient */
- inline Scalar& y() { return m_coeffs.coeffRef(1); }
- /** \returns a reference to the \c z coefficient */
- inline Scalar& z() { return m_coeffs.coeffRef(2); }
- /** \returns a reference to the \c w coefficient */
- inline Scalar& w() { return m_coeffs.coeffRef(3); }
-
- /** \returns a read-only vector expression of the imaginary part (x,y,z) */
- inline const Block<const Coefficients,3,1> vec() const { return m_coeffs.template start<3>(); }
-
- /** \returns a vector expression of the imaginary part (x,y,z) */
- inline Block<Coefficients,3,1> vec() { return m_coeffs.template start<3>(); }
-
- /** \returns a read-only vector expression of the coefficients (x,y,z,w) */
- inline const Coefficients& coeffs() const { return m_coeffs; }
-
- /** \returns a vector expression of the coefficients (x,y,z,w) */
- inline Coefficients& coeffs() { return m_coeffs; }
-
- /** Default constructor leaving the quaternion uninitialized. */
- inline Quaternion() {}
-
- /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
- * its four coefficients \a w, \a x, \a y and \a z.
- *
- * \warning Note the order of the arguments: the real \a w coefficient first,
- * while internally the coefficients are stored in the following order:
- * [\c x, \c y, \c z, \c w]
- */
- inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z)
- { m_coeffs << x, y, z, w; }
-
- /** Copy constructor */
- inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; }
-
- /** Constructs and initializes a quaternion from the angle-axis \a aa */
- explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
-
- /** Constructs and initializes a quaternion from either:
- * - a rotation matrix expression,
- * - a 4D vector expression representing quaternion coefficients.
- * \sa operator=(MatrixBase<Derived>)
- */
- template<typename Derived>
- explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
-
- Quaternion& operator=(const Quaternion& other);
- Quaternion& operator=(const AngleAxisType& aa);
- template<typename Derived>
- Quaternion& operator=(const MatrixBase<Derived>& m);
-
- /** \returns a quaternion representing an identity rotation
- * \sa MatrixBase::Identity()
- */
- static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); }
-
- /** \sa Quaternion::Identity(), MatrixBase::setIdentity()
- */
- inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; }
-
- /** \returns the squared norm of the quaternion's coefficients
- * \sa Quaternion::norm(), MatrixBase::squaredNorm()
- */
- inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); }
-
- /** \returns the norm of the quaternion's coefficients
- * \sa Quaternion::squaredNorm(), MatrixBase::norm()
- */
- inline Scalar norm() const { return m_coeffs.norm(); }
-
- /** Normalizes the quaternion \c *this
- * \sa normalized(), MatrixBase::normalize() */
- inline void normalize() { m_coeffs.normalize(); }
- /** \returns a normalized version of \c *this
- * \sa normalize(), MatrixBase::normalized() */
- inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); }
-
- /** \returns the dot product of \c *this and \a other
- * Geometrically speaking, the dot product of two unit quaternions
- * corresponds to the cosine of half the angle between the two rotations.
- * \sa angularDistance()
- */
- inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); }
-
- inline Scalar angularDistance(const Quaternion& other) const;
-
- Matrix3 toRotationMatrix(void) const;
-
- template<typename Derived1, typename Derived2>
- Quaternion& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
-
- inline Quaternion operator* (const Quaternion& q) const;
- inline Quaternion& operator*= (const Quaternion& q);
-
- Quaternion inverse(void) const;
- Quaternion conjugate(void) const;
-
- Quaternion slerp(Scalar t, const Quaternion& other) const;
-
- template<typename Derived>
- Vector3 operator* (const MatrixBase<Derived>& vec) const;
-
- /** \returns \c *this with scalar type casted to \a NewScalarType
- *
- * Note that if \a NewScalarType is equal to the current scalar type of \c *this
- * then this function smartly returns a const reference to \c *this.
- */
- template<typename NewScalarType>
- inline typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type cast() const
- { return typename internal::cast_return_type<Quaternion,Quaternion<NewScalarType> >::type(*this); }
-
- /** Copy constructor with scalar type conversion */
- template<typename OtherScalarType>
- inline explicit Quaternion(const Quaternion<OtherScalarType>& other)
- { m_coeffs = other.coeffs().template cast<Scalar>(); }
-
- /** \returns \c true if \c *this is approximately equal to \a other, within the precision
- * determined by \a prec.
- *
- * \sa MatrixBase::isApprox() */
- bool isApprox(const Quaternion& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
- { return m_coeffs.isApprox(other.m_coeffs, prec); }
-
-protected:
- Coefficients m_coeffs;
-};
-
-/** \ingroup Geometry_Module
- * single precision quaternion type */
-typedef Quaternion<float> Quaternionf;
-/** \ingroup Geometry_Module
- * double precision quaternion type */
-typedef Quaternion<double> Quaterniond;
-
-// Generic Quaternion * Quaternion product
-template<typename Scalar> inline Quaternion<Scalar>
-ei_quaternion_product(const Quaternion<Scalar>& a, const Quaternion<Scalar>& b)
-{
- return Quaternion<Scalar>
- (
- a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
- a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
- a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
- a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
- );
-}
-
-/** \returns the concatenation of two rotations as a quaternion-quaternion product */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::operator* (const Quaternion& other) const
-{
- return ei_quaternion_product(*this,other);
-}
-
-/** \sa operator*(Quaternion) */
-template <typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator*= (const Quaternion& other)
-{
- return (*this = *this * other);
-}
-
-/** Rotation of a vector by a quaternion.
- * \remarks If the quaternion is used to rotate several points (>1)
- * then it is much more efficient to first convert it to a 3x3 Matrix.
- * Comparison of the operation cost for n transformations:
- * - Quaternion: 30n
- * - Via a Matrix3: 24 + 15n
- */
-template <typename Scalar>
-template<typename Derived>
-inline typename Quaternion<Scalar>::Vector3
-Quaternion<Scalar>::operator* (const MatrixBase<Derived>& v) const
-{
- // Note that this algorithm comes from the optimization by hand
- // of the conversion to a Matrix followed by a Matrix/Vector product.
- // It appears to be much faster than the common algorithm found
- // in the litterature (30 versus 39 flops). It also requires two
- // Vector3 as temporaries.
- Vector3 uv;
- uv = 2 * this->vec().cross(v);
- return v + this->w() * uv + this->vec().cross(uv);
-}
-
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const Quaternion& other)
-{
- m_coeffs = other.m_coeffs;
- return *this;
-}
-
-/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
- */
-template<typename Scalar>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const AngleAxisType& aa)
-{
- Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
- this->w() = ei_cos(ha);
- this->vec() = ei_sin(ha) * aa.axis();
- return *this;
-}
-
-/** Set \c *this from the expression \a xpr:
- * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion
- * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix
- * and \a xpr is converted to a quaternion
- */
-template<typename Scalar>
-template<typename Derived>
-inline Quaternion<Scalar>& Quaternion<Scalar>::operator=(const MatrixBase<Derived>& xpr)
-{
- ei_quaternion_assign_impl<Derived>::run(*this, xpr.derived());
- return *this;
-}
-
-/** Convert the quaternion to a 3x3 rotation matrix */
-template<typename Scalar>
-inline typename Quaternion<Scalar>::Matrix3
-Quaternion<Scalar>::toRotationMatrix(void) const
-{
- // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
- // if not inlined then the cost of the return by value is huge ~ +35%,
- // however, not inlining this function is an order of magnitude slower, so
- // it has to be inlined, and so the return by value is not an issue
- Matrix3 res;
-
- const Scalar tx = Scalar(2)*this->x();
- const Scalar ty = Scalar(2)*this->y();
- const Scalar tz = Scalar(2)*this->z();
- const Scalar twx = tx*this->w();
- const Scalar twy = ty*this->w();
- const Scalar twz = tz*this->w();
- const Scalar txx = tx*this->x();
- const Scalar txy = ty*this->x();
- const Scalar txz = tz*this->x();
- const Scalar tyy = ty*this->y();
- const Scalar tyz = tz*this->y();
- const Scalar tzz = tz*this->z();
-
- res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
- res.coeffRef(0,1) = txy-twz;
- res.coeffRef(0,2) = txz+twy;
- res.coeffRef(1,0) = txy+twz;
- res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
- res.coeffRef(1,2) = tyz-twx;
- res.coeffRef(2,0) = txz-twy;
- res.coeffRef(2,1) = tyz+twx;
- res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
-
- return res;
-}
-
-/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b.
- *
- * \returns a reference to *this.
- *
- * Note that the two input vectors do \b not have to be normalized.
- */
-template<typename Scalar>
-template<typename Derived1, typename Derived2>
-inline Quaternion<Scalar>& Quaternion<Scalar>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
-{
- Vector3 v0 = a.normalized();
- Vector3 v1 = b.normalized();
- Scalar c = v0.eigen2_dot(v1);
-
- // if dot == 1, vectors are the same
- if (ei_isApprox(c,Scalar(1)))
- {
- // set to identity
- this->w() = 1; this->vec().setZero();
- return *this;
- }
- // if dot == -1, vectors are opposites
- if (ei_isApprox(c,Scalar(-1)))
- {
- this->vec() = v0.unitOrthogonal();
- this->w() = 0;
- return *this;
- }
-
- Vector3 axis = v0.cross(v1);
- Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2));
- Scalar invs = Scalar(1)/s;
- this->vec() = axis * invs;
- this->w() = s * Scalar(0.5);
-
- return *this;
-}
-
-/** \returns the multiplicative inverse of \c *this
- * Note that in most cases, i.e., if you simply want the opposite rotation,
- * and/or the quaternion is normalized, then it is enough to use the conjugate.
- *
- * \sa Quaternion::conjugate()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::inverse() const
-{
- // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
- Scalar n2 = this->squaredNorm();
- if (n2 > 0)
- return Quaternion(conjugate().coeffs() / n2);
- else
- {
- // return an invalid result to flag the error
- return Quaternion(Coefficients::Zero());
- }
-}
-
-/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
- * if the quaternion is normalized.
- * The conjugate of a quaternion represents the opposite rotation.
- *
- * \sa Quaternion::inverse()
- */
-template <typename Scalar>
-inline Quaternion<Scalar> Quaternion<Scalar>::conjugate() const
-{
- return Quaternion(this->w(),-this->x(),-this->y(),-this->z());
-}
-
-/** \returns the angle (in radian) between two rotations
- * \sa eigen2_dot()
- */
-template <typename Scalar>
-inline Scalar Quaternion<Scalar>::angularDistance(const Quaternion& other) const
-{
- double d = ei_abs(this->eigen2_dot(other));
- if (d>=1.0)
- return 0;
- return Scalar(2) * std::acos(d);
-}
-
-/** \returns the spherical linear interpolation between the two quaternions
- * \c *this and \a other at the parameter \a t
- */
-template <typename Scalar>
-Quaternion<Scalar> Quaternion<Scalar>::slerp(Scalar t, const Quaternion& other) const
-{
- static const Scalar one = Scalar(1) - machine_epsilon<Scalar>();
- Scalar d = this->eigen2_dot(other);
- Scalar absD = ei_abs(d);
-
- Scalar scale0;
- Scalar scale1;
-
- if (absD>=one)
- {
- scale0 = Scalar(1) - t;
- scale1 = t;
- }
- else
- {
- // theta is the angle between the 2 quaternions
- Scalar theta = std::acos(absD);
- Scalar sinTheta = ei_sin(theta);
-
- scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta;
- scale1 = ei_sin( ( t * theta) ) / sinTheta;
- if (d<0)
- scale1 = -scale1;
- }
-
- return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
-}
-
-// set from a rotation matrix
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,3,3>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& mat)
- {
- // This algorithm comes from "Quaternion Calculus and Fast Animation",
- // Ken Shoemake, 1987 SIGGRAPH course notes
- Scalar t = mat.trace();
- if (t > 0)
- {
- t = ei_sqrt(t + Scalar(1.0));
- q.w() = Scalar(0.5)*t;
- t = Scalar(0.5)/t;
- q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
- q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
- q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
- }
- else
- {
- int i = 0;
- if (mat.coeff(1,1) > mat.coeff(0,0))
- i = 1;
- if (mat.coeff(2,2) > mat.coeff(i,i))
- i = 2;
- int j = (i+1)%3;
- int k = (j+1)%3;
-
- t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
- q.coeffs().coeffRef(i) = Scalar(0.5) * t;
- t = Scalar(0.5)/t;
- q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
- q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
- q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
- }
- }
-};
-
-// set from a vector of coefficients assumed to be a quaternion
-template<typename Other>
-struct ei_quaternion_assign_impl<Other,4,1>
-{
- typedef typename Other::Scalar Scalar;
- static inline void run(Quaternion<Scalar>& q, const Other& vec)
- {
- q.coeffs() = vec;
- }
-};
-
-} // end namespace Eigen