aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Geometry/Hyperplane.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Geometry/Hyperplane.h')
-rw-r--r--Eigen/src/Geometry/Hyperplane.h64
1 files changed, 33 insertions, 31 deletions
diff --git a/Eigen/src/Geometry/Hyperplane.h b/Eigen/src/Geometry/Hyperplane.h
index 00b7c4300..05929b299 100644
--- a/Eigen/src/Geometry/Hyperplane.h
+++ b/Eigen/src/Geometry/Hyperplane.h
@@ -22,8 +22,8 @@ namespace Eigen {
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
* This class represents an hyperplane as the zero set of the implicit equation
@@ -41,7 +41,7 @@ public:
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef DenseIndex Index;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
? Dynamic
@@ -50,21 +50,21 @@ public:
typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
/** Default constructor without initialization */
- inline Hyperplane() {}
+ EIGEN_DEVICE_FUNC inline Hyperplane() {}
template<int OtherOptions>
- Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
: m_coeffs(other.coeffs())
{}
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
* of the ambient space */
- inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
+ EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
/** Construct a plane from its normal \a n and a point \a e onto the plane.
* \warning the vector normal is assumed to be normalized.
*/
- inline Hyperplane(const VectorType& n, const VectorType& e)
+ EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e)
: m_coeffs(n.size()+1)
{
normal() = n;
@@ -75,7 +75,7 @@ public:
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
* \warning the vector normal is assumed to be normalized.
*/
- inline Hyperplane(const VectorType& n, const Scalar& d)
+ EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d)
: m_coeffs(n.size()+1)
{
normal() = n;
@@ -85,7 +85,7 @@ public:
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
*/
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
+ EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
{
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
@@ -96,7 +96,7 @@ public:
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
* is required to be exactly 3.
*/
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
+ EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
@@ -120,19 +120,19 @@ public:
* so an arbitrary choice is made.
*/
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
+ EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
{
normal() = parametrized.direction().unitOrthogonal();
offset() = -parametrized.origin().dot(normal());
}
- ~Hyperplane() {}
+ EIGEN_DEVICE_FUNC ~Hyperplane() {}
/** \returns the dimension in which the plane holds */
- inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
+ EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
/** normalizes \c *this */
- void normalize(void)
+ EIGEN_DEVICE_FUNC void normalize(void)
{
m_coeffs /= normal().norm();
}
@@ -140,45 +140,45 @@ public:
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
- inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
+ EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
*/
- inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
+ EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); }
/** \returns the projection of a point \a p onto the plane \c *this.
*/
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
+ EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
- inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
+ EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
+ EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
* \warning the vector normal is assumed to be normalized.
*/
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
+ EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
* of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
+ EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); }
/** \returns a constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
- inline const Coefficients& coeffs() const { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
- inline Coefficients& coeffs() { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
/** \returns the intersection of *this with \a other.
*
@@ -186,16 +186,15 @@ public:
*
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
*/
- VectorType intersection(const Hyperplane& other) const
+ EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const
{
- using std::abs;
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
// whether the two lines are approximately parallel.
if(internal::isMuchSmallerThan(det, Scalar(1)))
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
+ if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0)))
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
else
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
@@ -215,10 +214,13 @@ public:
* or a more generic #Affine transformation. The default is #Affine.
*/
template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
+ EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
+ {
normal() = mat.inverse().transpose() * normal();
+ m_coeffs /= normal().norm();
+ }
else if (traits==Isometry)
normal() = mat * normal();
else
@@ -236,7 +238,7 @@ public:
* Other kind of transformations are not supported.
*/
template<int TrOptions>
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
+ EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
@@ -250,7 +252,7 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
{
return typename internal::cast_return_type<Hyperplane,
@@ -259,7 +261,7 @@ public:
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType,int OtherOptions>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
@@ -267,7 +269,7 @@ public:
*
* \sa MatrixBase::isApprox() */
template<int OtherOptions>
- bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected: