aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h')
-rw-r--r--Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h400
1 files changed, 400 insertions, 0 deletions
diff --git a/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h b/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
new file mode 100644
index 000000000..e45c272b4
--- /dev/null
+++ b/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h
@@ -0,0 +1,400 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
+#define EIGEN_INCOMPLETE_CHOlESKY_H
+
+#include <vector>
+#include <list>
+
+namespace Eigen {
+/**
+ * \brief Modified Incomplete Cholesky with dual threshold
+ *
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+ * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+ *
+ * \tparam Scalar the scalar type of the input matrices
+ * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>,
+ * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>.
+ *
+ * \implsparsesolverconcept
+ *
+ * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$
+ * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a
+ * fill-in reducing permutation as computed by the ordering method.
+ *
+ * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out,
+ * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed
+ * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where
+ * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$.
+ * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by
+ * the info() method, then you can either increase the initial shift, or better use another preconditioning technique.
+ *
+ */
+template <typename Scalar, int _UpLo = Lower, typename _OrderingType =
+#ifndef EIGEN_MPL2_ONLY
+AMDOrdering<int>
+#else
+NaturalOrdering<int>
+#endif
+>
+class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> >
+{
+ protected:
+ typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base;
+ using Base::m_isInitialized;
+ public:
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef _OrderingType OrderingType;
+ typedef typename OrderingType::PermutationType PermutationType;
+ typedef typename PermutationType::StorageIndex StorageIndex;
+ typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType;
+ typedef Matrix<Scalar,Dynamic,1> VectorSx;
+ typedef Matrix<RealScalar,Dynamic,1> VectorRx;
+ typedef Matrix<StorageIndex,Dynamic, 1> VectorIx;
+ typedef std::vector<std::list<StorageIndex> > VectorList;
+ enum { UpLo = _UpLo };
+ enum {
+ ColsAtCompileTime = Dynamic,
+ MaxColsAtCompileTime = Dynamic
+ };
+ public:
+
+ /** Default constructor leaving the object in a partly non-initialized stage.
+ *
+ * You must call compute() or the pair analyzePattern()/factorize() to make it valid.
+ *
+ * \sa IncompleteCholesky(const MatrixType&)
+ */
+ IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {}
+
+ /** Constructor computing the incomplete factorization for the given matrix \a matrix.
+ */
+ template<typename MatrixType>
+ IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false)
+ {
+ compute(matrix);
+ }
+
+ /** \returns number of rows of the factored matrix */
+ Index rows() const { return m_L.rows(); }
+
+ /** \returns number of columns of the factored matrix */
+ Index cols() const { return m_L.cols(); }
+
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * It triggers an assertion if \c *this has not been initialized through the respective constructor,
+ * or a call to compute() or analyzePattern().
+ *
+ * \returns \c Success if computation was successful,
+ * \c NumericalIssue if the matrix appears to be negative.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized.");
+ return m_info;
+ }
+
+ /** \brief Set the initial shift parameter \f$ \sigma \f$.
+ */
+ void setInitialShift(RealScalar shift) { m_initialShift = shift; }
+
+ /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat
+ */
+ template<typename MatrixType>
+ void analyzePattern(const MatrixType& mat)
+ {
+ OrderingType ord;
+ PermutationType pinv;
+ ord(mat.template selfadjointView<UpLo>(), pinv);
+ if(pinv.size()>0) m_perm = pinv.inverse();
+ else m_perm.resize(0);
+ m_L.resize(mat.rows(), mat.cols());
+ m_analysisIsOk = true;
+ m_isInitialized = true;
+ m_info = Success;
+ }
+
+ /** \brief Performs the numerical factorization of the input matrix \a mat
+ *
+ * The method analyzePattern() or compute() must have been called beforehand
+ * with a matrix having the same pattern.
+ *
+ * \sa compute(), analyzePattern()
+ */
+ template<typename MatrixType>
+ void factorize(const MatrixType& mat);
+
+ /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat
+ *
+ * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods.
+ *
+ * \sa analyzePattern(), factorize()
+ */
+ template<typename MatrixType>
+ void compute(const MatrixType& mat)
+ {
+ analyzePattern(mat);
+ factorize(mat);
+ }
+
+ // internal
+ template<typename Rhs, typename Dest>
+ void _solve_impl(const Rhs& b, Dest& x) const
+ {
+ eigen_assert(m_factorizationIsOk && "factorize() should be called first");
+ if (m_perm.rows() == b.rows()) x = m_perm * b;
+ else x = b;
+ x = m_scale.asDiagonal() * x;
+ x = m_L.template triangularView<Lower>().solve(x);
+ x = m_L.adjoint().template triangularView<Upper>().solve(x);
+ x = m_scale.asDiagonal() * x;
+ if (m_perm.rows() == b.rows())
+ x = m_perm.inverse() * x;
+ }
+
+ /** \returns the sparse lower triangular factor L */
+ const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; }
+
+ /** \returns a vector representing the scaling factor S */
+ const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; }
+
+ /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */
+ const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; }
+
+ protected:
+ FactorType m_L; // The lower part stored in CSC
+ VectorRx m_scale; // The vector for scaling the matrix
+ RealScalar m_initialShift; // The initial shift parameter
+ bool m_analysisIsOk;
+ bool m_factorizationIsOk;
+ ComputationInfo m_info;
+ PermutationType m_perm;
+
+ private:
+ inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol);
+};
+
+// Based on the following paper:
+// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999
+// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf
+template<typename Scalar, int _UpLo, typename OrderingType>
+template<typename _MatrixType>
+void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
+{
+ using std::sqrt;
+ eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
+
+ // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
+
+ // Apply the fill-reducing permutation computed in analyzePattern()
+ if (m_perm.rows() == mat.rows() ) // To detect the null permutation
+ {
+ // The temporary is needed to make sure that the diagonal entry is properly sorted
+ FactorType tmp(mat.rows(), mat.cols());
+ tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
+ m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>();
+ }
+ else
+ {
+ m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
+ }
+
+ Index n = m_L.cols();
+ Index nnz = m_L.nonZeros();
+ Map<VectorSx> vals(m_L.valuePtr(), nnz); //values
+ Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices
+ Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
+ VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
+ VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
+ VectorSx col_vals(n); // Store a nonzero values in each column
+ VectorIx col_irow(n); // Row indices of nonzero elements in each column
+ VectorIx col_pattern(n);
+ col_pattern.fill(-1);
+ StorageIndex col_nnz;
+
+
+ // Computes the scaling factors
+ m_scale.resize(n);
+ m_scale.setZero();
+ for (Index j = 0; j < n; j++)
+ for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
+ {
+ m_scale(j) += numext::abs2(vals(k));
+ if(rowIdx[k]!=j)
+ m_scale(rowIdx[k]) += numext::abs2(vals(k));
+ }
+
+ m_scale = m_scale.cwiseSqrt().cwiseSqrt();
+
+ for (Index j = 0; j < n; ++j)
+ if(m_scale(j)>(std::numeric_limits<RealScalar>::min)())
+ m_scale(j) = RealScalar(1)/m_scale(j);
+ else
+ m_scale(j) = 1;
+
+ // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster)
+
+ // Scale and compute the shift for the matrix
+ RealScalar mindiag = NumTraits<RealScalar>::highest();
+ for (Index j = 0; j < n; j++)
+ {
+ for (Index k = colPtr[j]; k < colPtr[j+1]; k++)
+ vals[k] *= (m_scale(j)*m_scale(rowIdx[k]));
+ eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored");
+ mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag);
+ }
+
+ FactorType L_save = m_L;
+
+ RealScalar shift = 0;
+ if(mindiag <= RealScalar(0.))
+ shift = m_initialShift - mindiag;
+
+ m_info = NumericalIssue;
+
+ // Try to perform the incomplete factorization using the current shift
+ int iter = 0;
+ do
+ {
+ // Apply the shift to the diagonal elements of the matrix
+ for (Index j = 0; j < n; j++)
+ vals[colPtr[j]] += shift;
+
+ // jki version of the Cholesky factorization
+ Index j=0;
+ for (; j < n; ++j)
+ {
+ // Left-looking factorization of the j-th column
+ // First, load the j-th column into col_vals
+ Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
+ col_nnz = 0;
+ for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+ {
+ StorageIndex l = rowIdx[i];
+ col_vals(col_nnz) = vals[i];
+ col_irow(col_nnz) = l;
+ col_pattern(l) = col_nnz;
+ col_nnz++;
+ }
+ {
+ typename std::list<StorageIndex>::iterator k;
+ // Browse all previous columns that will update column j
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
+ {
+ Index jk = firstElt(*k); // First element to use in the column
+ eigen_internal_assert(rowIdx[jk]==j);
+ Scalar v_j_jk = numext::conj(vals[jk]);
+
+ jk += 1;
+ for (Index i = jk; i < colPtr[*k+1]; i++)
+ {
+ StorageIndex l = rowIdx[i];
+ if(col_pattern[l]<0)
+ {
+ col_vals(col_nnz) = vals[i] * v_j_jk;
+ col_irow[col_nnz] = l;
+ col_pattern(l) = col_nnz;
+ col_nnz++;
+ }
+ else
+ col_vals(col_pattern[l]) -= vals[i] * v_j_jk;
+ }
+ updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
+ }
+ }
+
+ // Scale the current column
+ if(numext::real(diag) <= 0)
+ {
+ if(++iter>=10)
+ return;
+
+ // increase shift
+ shift = numext::maxi(m_initialShift,RealScalar(2)*shift);
+ // restore m_L, col_pattern, and listCol
+ vals = Map<const VectorSx>(L_save.valuePtr(), nnz);
+ rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz);
+ colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1);
+ col_pattern.fill(-1);
+ for(Index i=0; i<n; ++i)
+ listCol[i].clear();
+
+ break;
+ }
+
+ RealScalar rdiag = sqrt(numext::real(diag));
+ vals[colPtr[j]] = rdiag;
+ for (Index k = 0; k<col_nnz; ++k)
+ {
+ Index i = col_irow[k];
+ //Scale
+ col_vals(k) /= rdiag;
+ //Update the remaining diagonals with col_vals
+ vals[colPtr[i]] -= numext::abs2(col_vals(k));
+ }
+ // Select the largest p elements
+ // p is the original number of elements in the column (without the diagonal)
+ Index p = colPtr[j+1] - colPtr[j] - 1 ;
+ Ref<VectorSx> cvals = col_vals.head(col_nnz);
+ Ref<VectorIx> cirow = col_irow.head(col_nnz);
+ internal::QuickSplit(cvals,cirow, p);
+ // Insert the largest p elements in the matrix
+ Index cpt = 0;
+ for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++)
+ {
+ vals[i] = col_vals(cpt);
+ rowIdx[i] = col_irow(cpt);
+ // restore col_pattern:
+ col_pattern(col_irow(cpt)) = -1;
+ cpt++;
+ }
+ // Get the first smallest row index and put it after the diagonal element
+ Index jk = colPtr(j)+1;
+ updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
+ }
+
+ if(j==n)
+ {
+ m_factorizationIsOk = true;
+ m_info = Success;
+ }
+ } while(m_info!=Success);
+}
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol)
+{
+ if (jk < colPtr(col+1) )
+ {
+ Index p = colPtr(col+1) - jk;
+ Index minpos;
+ rowIdx.segment(jk,p).minCoeff(&minpos);
+ minpos += jk;
+ if (rowIdx(minpos) != rowIdx(jk))
+ {
+ //Swap
+ std::swap(rowIdx(jk),rowIdx(minpos));
+ std::swap(vals(jk),vals(minpos));
+ }
+ firstElt(col) = internal::convert_index<StorageIndex,Index>(jk);
+ listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col));
+ }
+}
+
+} // end namespace Eigen
+
+#endif