aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SVD/UpperBidiagonalization.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SVD/UpperBidiagonalization.h')
-rw-r--r--Eigen/src/SVD/UpperBidiagonalization.h326
1 files changed, 295 insertions, 31 deletions
diff --git a/Eigen/src/SVD/UpperBidiagonalization.h b/Eigen/src/SVD/UpperBidiagonalization.h
index 587de37a5..0b1460894 100644
--- a/Eigen/src/SVD/UpperBidiagonalization.h
+++ b/Eigen/src/SVD/UpperBidiagonalization.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -28,15 +29,15 @@ template<typename _MatrixType> class UpperBidiagonalization
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::Index Index;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar, 1, ColsAtCompileTime> RowVectorType;
typedef Matrix<Scalar, RowsAtCompileTime, 1> ColVectorType;
- typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0> BidiagonalType;
+ typedef BandMatrix<RealScalar, ColsAtCompileTime, ColsAtCompileTime, 1, 0, RowMajor> BidiagonalType;
typedef Matrix<Scalar, ColsAtCompileTime, 1> DiagVectorType;
typedef Matrix<Scalar, ColsAtCompileTimeMinusOne, 1> SuperDiagVectorType;
typedef HouseholderSequence<
const MatrixType,
- CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, const Diagonal<const MatrixType,0> >
+ const typename internal::remove_all<typename Diagonal<const MatrixType,0>::ConjugateReturnType>::type
> HouseholderUSequenceType;
typedef HouseholderSequence<
const typename internal::remove_all<typename MatrixType::ConjugateReturnType>::type,
@@ -52,7 +53,7 @@ template<typename _MatrixType> class UpperBidiagonalization
*/
UpperBidiagonalization() : m_householder(), m_bidiagonal(), m_isInitialized(false) {}
- UpperBidiagonalization(const MatrixType& matrix)
+ explicit UpperBidiagonalization(const MatrixType& matrix)
: m_householder(matrix.rows(), matrix.cols()),
m_bidiagonal(matrix.cols(), matrix.cols()),
m_isInitialized(false)
@@ -61,6 +62,7 @@ template<typename _MatrixType> class UpperBidiagonalization
}
UpperBidiagonalization& compute(const MatrixType& matrix);
+ UpperBidiagonalization& computeUnblocked(const MatrixType& matrix);
const MatrixType& householder() const { return m_householder; }
const BidiagonalType& bidiagonal() const { return m_bidiagonal; }
@@ -85,45 +87,307 @@ template<typename _MatrixType> class UpperBidiagonalization
bool m_isInitialized;
};
-template<typename _MatrixType>
-UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
+// Standard upper bidiagonalization without fancy optimizations
+// This version should be faster for small matrix size
+template<typename MatrixType>
+void upperbidiagonalization_inplace_unblocked(MatrixType& mat,
+ typename MatrixType::RealScalar *diagonal,
+ typename MatrixType::RealScalar *upper_diagonal,
+ typename MatrixType::Scalar* tempData = 0)
{
- Index rows = matrix.rows();
- Index cols = matrix.cols();
-
- eigen_assert(rows >= cols && "UpperBidiagonalization is only for matrices satisfying rows>=cols.");
-
- m_householder = matrix;
+ typedef typename MatrixType::Scalar Scalar;
- ColVectorType temp(rows);
+ Index rows = mat.rows();
+ Index cols = mat.cols();
+
+ typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixType::MaxRowsAtCompileTime,1> TempType;
+ TempType tempVector;
+ if(tempData==0)
+ {
+ tempVector.resize(rows);
+ tempData = tempVector.data();
+ }
for (Index k = 0; /* breaks at k==cols-1 below */ ; ++k)
{
Index remainingRows = rows - k;
Index remainingCols = cols - k - 1;
- // construct left householder transform in-place in m_householder
- m_householder.col(k).tail(remainingRows)
- .makeHouseholderInPlace(m_householder.coeffRef(k,k),
- m_bidiagonal.template diagonal<0>().coeffRef(k));
- // apply householder transform to remaining part of m_householder on the left
- m_householder.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(m_householder.col(k).tail(remainingRows-1),
- m_householder.coeff(k,k),
- temp.data());
+ // construct left householder transform in-place in A
+ mat.col(k).tail(remainingRows)
+ .makeHouseholderInPlace(mat.coeffRef(k,k), diagonal[k]);
+ // apply householder transform to remaining part of A on the left
+ mat.bottomRightCorner(remainingRows, remainingCols)
+ .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), mat.coeff(k,k), tempData);
if(k == cols-1) break;
+
+ // construct right householder transform in-place in mat
+ mat.row(k).tail(remainingCols)
+ .makeHouseholderInPlace(mat.coeffRef(k,k+1), upper_diagonal[k]);
+ // apply householder transform to remaining part of mat on the left
+ mat.bottomRightCorner(remainingRows-1, remainingCols)
+ .applyHouseholderOnTheRight(mat.row(k).tail(remainingCols-1).transpose(), mat.coeff(k,k+1), tempData);
+ }
+}
+
+/** \internal
+ * Helper routine for the block reduction to upper bidiagonal form.
+ *
+ * Let's partition the matrix A:
+ *
+ * | A00 A01 |
+ * A = | |
+ * | A10 A11 |
+ *
+ * This function reduces to bidiagonal form the left \c rows x \a blockSize vertical panel [A00/A10]
+ * and the \a blockSize x \c cols horizontal panel [A00 A01] of the matrix \a A. The bottom-right block A11
+ * is updated using matrix-matrix products:
+ * A22 -= V * Y^T - X * U^T
+ * where V and U contains the left and right Householder vectors. U and V are stored in A10, and A01
+ * respectively, and the update matrices X and Y are computed during the reduction.
+ *
+ */
+template<typename MatrixType>
+void upperbidiagonalization_blocked_helper(MatrixType& A,
+ typename MatrixType::RealScalar *diagonal,
+ typename MatrixType::RealScalar *upper_diagonal,
+ Index bs,
+ Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
+ traits<MatrixType>::Flags & RowMajorBit> > X,
+ Ref<Matrix<typename MatrixType::Scalar, Dynamic, Dynamic,
+ traits<MatrixType>::Flags & RowMajorBit> > Y)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
+ typedef InnerStride<int(StorageOrder) == int(ColMajor) ? 1 : Dynamic> ColInnerStride;
+ typedef InnerStride<int(StorageOrder) == int(ColMajor) ? Dynamic : 1> RowInnerStride;
+ typedef Ref<Matrix<Scalar, Dynamic, 1>, 0, ColInnerStride> SubColumnType;
+ typedef Ref<Matrix<Scalar, 1, Dynamic>, 0, RowInnerStride> SubRowType;
+ typedef Ref<Matrix<Scalar, Dynamic, Dynamic, StorageOrder > > SubMatType;
+
+ Index brows = A.rows();
+ Index bcols = A.cols();
+
+ Scalar tau_u, tau_u_prev(0), tau_v;
+
+ for(Index k = 0; k < bs; ++k)
+ {
+ Index remainingRows = brows - k;
+ Index remainingCols = bcols - k - 1;
+
+ SubMatType X_k1( X.block(k,0, remainingRows,k) );
+ SubMatType V_k1( A.block(k,0, remainingRows,k) );
+
+ // 1 - update the k-th column of A
+ SubColumnType v_k = A.col(k).tail(remainingRows);
+ v_k -= V_k1 * Y.row(k).head(k).adjoint();
+ if(k) v_k -= X_k1 * A.col(k).head(k);
+
+ // 2 - construct left Householder transform in-place
+ v_k.makeHouseholderInPlace(tau_v, diagonal[k]);
+
+ if(k+1<bcols)
+ {
+ SubMatType Y_k ( Y.block(k+1,0, remainingCols, k+1) );
+ SubMatType U_k1 ( A.block(0,k+1, k,remainingCols) );
+
+ // this eases the application of Householder transforAions
+ // A(k,k) will store tau_v later
+ A(k,k) = Scalar(1);
+
+ // 3 - Compute y_k^T = tau_v * ( A^T*v_k - Y_k-1*V_k-1^T*v_k - U_k-1*X_k-1^T*v_k )
+ {
+ SubColumnType y_k( Y.col(k).tail(remainingCols) );
+
+ // let's use the begining of column k of Y as a temporary vector
+ SubColumnType tmp( Y.col(k).head(k) );
+ y_k.noalias() = A.block(k,k+1, remainingRows,remainingCols).adjoint() * v_k; // bottleneck
+ tmp.noalias() = V_k1.adjoint() * v_k;
+ y_k.noalias() -= Y_k.leftCols(k) * tmp;
+ tmp.noalias() = X_k1.adjoint() * v_k;
+ y_k.noalias() -= U_k1.adjoint() * tmp;
+ y_k *= numext::conj(tau_v);
+ }
+
+ // 4 - update k-th row of A (it will become u_k)
+ SubRowType u_k( A.row(k).tail(remainingCols) );
+ u_k = u_k.conjugate();
+ {
+ u_k -= Y_k * A.row(k).head(k+1).adjoint();
+ if(k) u_k -= U_k1.adjoint() * X.row(k).head(k).adjoint();
+ }
+
+ // 5 - construct right Householder transform in-place
+ u_k.makeHouseholderInPlace(tau_u, upper_diagonal[k]);
+
+ // this eases the application of Householder transformations
+ // A(k,k+1) will store tau_u later
+ A(k,k+1) = Scalar(1);
+
+ // 6 - Compute x_k = tau_u * ( A*u_k - X_k-1*U_k-1^T*u_k - V_k*Y_k^T*u_k )
+ {
+ SubColumnType x_k ( X.col(k).tail(remainingRows-1) );
+
+ // let's use the begining of column k of X as a temporary vectors
+ // note that tmp0 and tmp1 overlaps
+ SubColumnType tmp0 ( X.col(k).head(k) ),
+ tmp1 ( X.col(k).head(k+1) );
+
+ x_k.noalias() = A.block(k+1,k+1, remainingRows-1,remainingCols) * u_k.transpose(); // bottleneck
+ tmp0.noalias() = U_k1 * u_k.transpose();
+ x_k.noalias() -= X_k1.bottomRows(remainingRows-1) * tmp0;
+ tmp1.noalias() = Y_k.adjoint() * u_k.transpose();
+ x_k.noalias() -= A.block(k+1,0, remainingRows-1,k+1) * tmp1;
+ x_k *= numext::conj(tau_u);
+ tau_u = numext::conj(tau_u);
+ u_k = u_k.conjugate();
+ }
+
+ if(k>0) A.coeffRef(k-1,k) = tau_u_prev;
+ tau_u_prev = tau_u;
+ }
+ else
+ A.coeffRef(k-1,k) = tau_u_prev;
+
+ A.coeffRef(k,k) = tau_v;
+ }
+
+ if(bs<bcols)
+ A.coeffRef(bs-1,bs) = tau_u_prev;
+
+ // update A22
+ if(bcols>bs && brows>bs)
+ {
+ SubMatType A11( A.bottomRightCorner(brows-bs,bcols-bs) );
+ SubMatType A10( A.block(bs,0, brows-bs,bs) );
+ SubMatType A01( A.block(0,bs, bs,bcols-bs) );
+ Scalar tmp = A01(bs-1,0);
+ A01(bs-1,0) = 1;
+ A11.noalias() -= A10 * Y.topLeftCorner(bcols,bs).bottomRows(bcols-bs).adjoint();
+ A11.noalias() -= X.topLeftCorner(brows,bs).bottomRows(brows-bs) * A01;
+ A01(bs-1,0) = tmp;
+ }
+}
+
+/** \internal
+ *
+ * Implementation of a block-bidiagonal reduction.
+ * It is based on the following paper:
+ * The Design of a Parallel Dense Linear Algebra Software Library: Reduction to Hessenberg, Tridiagonal, and Bidiagonal Form.
+ * by Jaeyoung Choi, Jack J. Dongarra, David W. Walker. (1995)
+ * section 3.3
+ */
+template<typename MatrixType, typename BidiagType>
+void upperbidiagonalization_inplace_blocked(MatrixType& A, BidiagType& bidiagonal,
+ Index maxBlockSize=32,
+ typename MatrixType::Scalar* /*tempData*/ = 0)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef Block<MatrixType,Dynamic,Dynamic> BlockType;
+
+ Index rows = A.rows();
+ Index cols = A.cols();
+ Index size = (std::min)(rows, cols);
+
+ // X and Y are work space
+ enum { StorageOrder = traits<MatrixType>::Flags & RowMajorBit };
+ Matrix<Scalar,
+ MatrixType::RowsAtCompileTime,
+ Dynamic,
+ StorageOrder,
+ MatrixType::MaxRowsAtCompileTime> X(rows,maxBlockSize);
+ Matrix<Scalar,
+ MatrixType::ColsAtCompileTime,
+ Dynamic,
+ StorageOrder,
+ MatrixType::MaxColsAtCompileTime> Y(cols,maxBlockSize);
+ Index blockSize = (std::min)(maxBlockSize,size);
+
+ Index k = 0;
+ for(k = 0; k < size; k += blockSize)
+ {
+ Index bs = (std::min)(size-k,blockSize); // actual size of the block
+ Index brows = rows - k; // rows of the block
+ Index bcols = cols - k; // columns of the block
+
+ // partition the matrix A:
+ //
+ // | A00 A01 A02 |
+ // | |
+ // A = | A10 A11 A12 |
+ // | |
+ // | A20 A21 A22 |
+ //
+ // where A11 is a bs x bs diagonal block,
+ // and let:
+ // | A11 A12 |
+ // B = | |
+ // | A21 A22 |
+
+ BlockType B = A.block(k,k,brows,bcols);
- // construct right householder transform in-place in m_householder
- m_householder.row(k).tail(remainingCols)
- .makeHouseholderInPlace(m_householder.coeffRef(k,k+1),
- m_bidiagonal.template diagonal<1>().coeffRef(k));
- // apply householder transform to remaining part of m_householder on the left
- m_householder.bottomRightCorner(remainingRows-1, remainingCols)
- .applyHouseholderOnTheRight(m_householder.row(k).tail(remainingCols-1).transpose(),
- m_householder.coeff(k,k+1),
- temp.data());
+ // This stage performs the bidiagonalization of A11, A21, A12, and updating of A22.
+ // Finally, the algorithm continue on the updated A22.
+ //
+ // However, if B is too small, or A22 empty, then let's use an unblocked strategy
+ if(k+bs==cols || bcols<48) // somewhat arbitrary threshold
+ {
+ upperbidiagonalization_inplace_unblocked(B,
+ &(bidiagonal.template diagonal<0>().coeffRef(k)),
+ &(bidiagonal.template diagonal<1>().coeffRef(k)),
+ X.data()
+ );
+ break; // We're done
+ }
+ else
+ {
+ upperbidiagonalization_blocked_helper<BlockType>( B,
+ &(bidiagonal.template diagonal<0>().coeffRef(k)),
+ &(bidiagonal.template diagonal<1>().coeffRef(k)),
+ bs,
+ X.topLeftCorner(brows,bs),
+ Y.topLeftCorner(bcols,bs)
+ );
+ }
}
+}
+
+template<typename _MatrixType>
+UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::computeUnblocked(const _MatrixType& matrix)
+{
+ Index rows = matrix.rows();
+ Index cols = matrix.cols();
+ EIGEN_ONLY_USED_FOR_DEBUG(cols);
+
+ eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
+
+ m_householder = matrix;
+
+ ColVectorType temp(rows);
+
+ upperbidiagonalization_inplace_unblocked(m_householder,
+ &(m_bidiagonal.template diagonal<0>().coeffRef(0)),
+ &(m_bidiagonal.template diagonal<1>().coeffRef(0)),
+ temp.data());
+
+ m_isInitialized = true;
+ return *this;
+}
+
+template<typename _MatrixType>
+UpperBidiagonalization<_MatrixType>& UpperBidiagonalization<_MatrixType>::compute(const _MatrixType& matrix)
+{
+ Index rows = matrix.rows();
+ Index cols = matrix.cols();
+ EIGEN_ONLY_USED_FOR_DEBUG(rows);
+ EIGEN_ONLY_USED_FOR_DEBUG(cols);
+
+ eigen_assert(rows >= cols && "UpperBidiagonalization is only for Arices satisfying rows>=cols.");
+
+ m_householder = matrix;
+ upperbidiagonalization_inplace_blocked(m_householder, m_bidiagonal);
+
m_isInitialized = true;
return *this;
}